• Shock · Oct 2020

    Effect of Mild Hypothermia on the Diaphragmatic Microcirculation and Function in a Murine Cardiopulmonary Resuscitated Model.

    • Shao-Ping Li, Xian-Long Zhou, Qi Li, Yu-Qian Zhao, Zhi-Gang Zhao, and Yan Zhao.
    • Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
    • Shock. 2020 Oct 1; 54 (4): 555-562.

    ObjectiveDiaphragm dysfunction often occurs in patients with prolonged mechanical ventilation (MV) after resuscitation. Mild hypothermia (MHT) is a classical treatment to improve the outcomes of cardiac arrest (CA); however, the effect of MHT on diaphragm function remains unclear. In the present study, we aim to investigate the effect of MHT on diaphragmatic microcirculation and function using a murine cardiopulmonary resuscitation model.MethodsThirty-two rats were randomly assigned into a resuscitation normothermia group (RNT), an intraresuscitation hypothermia group (IRH), a postresuscitation hypothermia group (PRH), or a sham control group. CA was induced by airway occlusion, and resuscitation was implemented by precordial compression and MV. The diaphragmatic microvascular blood flow velocity, diaphragmatic microcirculation flow index (MFI), and perfused vascular density (PVD) were measured. The diaphragm was then removed for in vitro contractile property examination and cross-sectional area measurement. The lipid peroxidation and superoxide dismutase (SOD) levels in the diaphragm were also assayed.ResultsEither early or delayed MHT intervention did not improve the diaphragmatic microvascular blood flow velocity, MFI, and PVD, which were significantly decreased during prolonged MV after resuscitation. Compared with the RNT group, treatment with MHT increased the diaphragm contractility, fiber dimensions, and SOD levels and decreased diaphragm lipid peroxidation. A more significant change in these indices was observed in the IRH group compared with that in the PRH group.ConclusionMHT preserves the diaphragm contractility and fiber dimensions and decreases oxidative stress but does not improve the microcirculatory blood supply during prolonged MV after resuscitation. Early MHT intervention is more efficient in preventing diaphragm dysfunction than delayed intervention after CA.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.