-
Journal of neurosurgery · Jan 2021
Correlation of spontaneous and traumatic anterior skull base CSF leak flow rates with fluid pattern on early, delayed, and subtraction volumetric extended echo train T2-weighted MRI.
- John W Rutland, Satish Govindaraj, Corey M Gill, Michael Shohet, Alfred M C Iloreta, Joshua B Bederson, Raj K Shrivastava, and Bradley N Delman.
- Departments of1Neurosurgery.
- J. Neurosurg. 2021 Jan 1; 134 (1): 286294286-294.
ObjectiveCSF leakage is a potentially fatal condition that may result when a skull base dural defect permits CSF communication between the cranial vault and sinonasal cavities. Flow rate is an important property of CSF leaks that can contribute to surgical decision-making and predispose patients to complications and inferior outcomes. Noninvasive preoperative prediction of the leak rate is challenging with traditional diagnostic tools. The present study compares fluid configurations on early and late volumetric extended echo train T2-weighted MRI by using image tracings and sequence subtraction as a novel method of quantifying CSF flow rate, and it correlates radiological results with intraoperative findings and clinical outcomes.MethodsA total of 45 patients met inclusion criteria for this study and underwent 3-T MRI. Imaging sequences included two identical CUBE T2 (vendor trade name for volumetric extended echo train T2) acquisitions at the beginning and end of the scanning session, approximately 45 minutes apart. Twenty-five patients were confirmed to have definitive spontaneous or traumatic anterior skull base CSF leaks. Semiautomated volumetric segmentation of CSF intensity was performed on both CUBE data sets by using 3D-Slicer software, and volumes were subtracted to obtain accumulated CSF volume. These imaging-derived fluid accumulations were correlated with high- or low-flow states, as well as ultimate treatment outcomes including recurrences.ResultsOf the 45 patients, 25 (55.6%) had definitive evidence of CSF leakage, and 22 (88%) of these underwent surgical repair. Patients with high-flow CSF leaks had higher early (4.058 cm3 vs 0.982 cm3, p = 0.04), late (4.58 cm3 vs 1.096 cm3, p = 0.04), and accumulated (0.53 cm3 vs 0.11 cm3, p = 0.01) fluid volume measurements than patients with low-flow leaks. The 5 (22.7%) patients who exhibited postoperative CSF leak recurrence had significantly greater early (6.30 cm3 vs 1.23 cm3, p = 0.008) and late (6.87 cm3 vs 1.45 cm3, p = 0.008) volumes. Accumulated volume was not significantly greater in patients with leak recurrence (0.58 cm3 vs 0.22 cm3, p = 0.07). Early, late, and accumulated volumes were significantly correlated with postoperative hospital stay as well as duration of postoperative lumbar drain placement (p < 0.05 for all measures).ConclusionsHigh-resolution CUBE T2 MRI, coupled with precise volumetric segmentation and subtraction of sinonasal hyperintensity, not only demonstrated predictive value in differentiating low- and high-flow CSF leaks, but also correlated with postoperative complications such as leak recurrence. These findings may be useful in the clinical workup and neurosurgical management of patients with skull base CSF leaks.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.