• Experimental neurology · Jan 2017

    Identification of KRT16 as a target of an autoantibody response in complex regional pain syndrome.

    • Maral Tajerian, Victor Hung, Hamda Khan, Lauren J Lahey, Yuan Sun, Frank Birklein, Heidrun H Krämer, William H Robinson, Wade S Kingery, and J David Clark.
    • Veterans Affairs Palo Alto Health Care System Palo Alto, CA, USA; Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA, USA; Palo Alto Veterans Institute for Research, Palo Alto, CA, USA. Electronic address: maral@stanford.edu.
    • Exp. Neurol. 2017 Jan 1; 287 (Pt 1): 14-20.

    ObjectiveUsing a mouse model of complex regional pain syndrome (CRPS), our goal was to identify autoantigens in the skin of the affected limb.MethodsA CRPS-like state was induced using the tibia fracture/cast immobilization model. Three weeks after fracture, hindpaw skin was homogenized, run on 2-d gels, and probed by sera from fracture and control mice. Spots of interest were analyzed by liquid chromatography-mass spectroscopy (LC-MS) and the list of targets validated by examining their abundance and subcellular localization. In order to measure the autoantigenicity of selected protein targets, we quantified the binding of IgM in control and fracture mice sera, as well as in control and CRPS human sera, to the recombinant protein.ResultsWe show unique binding between fracture skin extracts and fracture sera, suggesting the presence of auto-antigens. LC-MS analysis provided us a list of potential targets, some of which were upregulated after fracture (KRT16, eEF1a1, and PRPH), while others showed subcellular-redistribution and increased membrane localization (ANXA2 and ENO3). No changes in protein citrullination or carbamylation were observed. In addition to increased abundance, KRT16 demonstrated autoantigenicity, since sera from both fracture mice and CRPS patients showed increased autoantibody binding to recombinant kRT16 protein.ConclusionsPursuing autoimmune contributions to CRPS provides a novel approach to understanding the condition and may allow the development of mechanism-based therapies. The identification of autoantibodies against KRT16 as a biomarker in mice and in humans is a critical step towards these goals, and towards redefining CRPS as having an autoimmune etiology.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…