• Clinical biomechanics · Mar 2014

    Biomechanical analysis of impending femoral neck fractures: the role of percutaneous cement augmentation for osteolytic lesions.

    • Brian T Palumbo, Charles Nalley, Roger B Gaskins, Sergio Gutierrez, Gerald E Alexander, Leon Anijar, Aniruddh Nayak, David Cheong, and Brandon G Santoni.
    • Florida Orthopaedic Institute, Tampa, FL, USA.
    • Clin Biomech (Bristol, Avon). 2014 Mar 1; 29 (3): 289-95.

    BackgroundManagement of impending pathologic femoral neck fractures includes internal fixation, arthroplasty and megaprostheses. The study aim was to determine the augmentative effect of cement injection for minimally invasive treatment of femoral neck lesions.MethodsTwenty-seven cadaveric femora received a simulated osteolytic lesion previously shown to decrease the femur's failure load by 50%. Specimens were allocated to three groups of nine and loaded to failure in simulated single-leg stance: (1) percutaneous cementation + internal fixation (PCIF); (2) percutaneous cementation (PC); and (3) internal fixation (IF). Lesion-only and augmented finite element models were virtually loaded and stresses were queried adjacent to the lesion.FindingsPCIF resulted in the largest failure load though the increase was not significantly greater than the PC or IF groups. Inspection of the PC and PCIF specimens indicated that the generation of a cement column that spanned the superior and inferior cortices of the femoral neck increased failure loads significantly. Finite element analysis indicated that IF and PCIF constructs decreased the stress adjacent to the lesion to intact femur levels. Cementation without superior-to-inferior femoral neck cortical contact did not restore proximal femoral stress toward the intact condition.InterpretationInternal fixation alone and internal fixation with or without cementation produce similar levels of mechanical augmentation in femora containing a high-risk lesion of impending fracture. A cement injection technique that produces a cement column contacting the superior and inferior femoral neck cortices confers the highest degree of biomechanical stability, should percutaneous cementation alone be performed.Copyright © 2013 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.