• J Neurosurg Spine · Oct 2014

    Mechanical yield of the lumbar annulus: a possible contributor to instability: Laboratory investigation.

    • Brian D Stemper, Jamie L Baisden, Narayan Yoganandan, Barry S Shender, and Dennis J Maiman.
    • Department of Neurosurgery, Medical College of Wisconsin;
    • J Neurosurg Spine. 2014 Oct 1; 21 (4): 608-13.

    ObjectSegmental instability in the lumbar spine can result from a number of mechanisms including intervertebral disc degeneration and facet joint degradation. Under traumatic circumstances, elevated loading may lead to mechanical yield of the annular fibers, which can decrease load-carrying capacity and contribute to instability. The purpose of this study was to quantify the biomechanics of intervertebral annular yield during tensile loading with respect to spinal level and anatomical region within the intervertebral disc.MethodsThis laboratory-based study incorporated isolated lumbar spine annular specimens from younger and normal or mildly degenerated intervertebral discs. Specimens were quasi-statically distracted to failure in an environmentally controlled chamber. Stress and strain associated with yield and ultimate failure were quantified, as was stiffness in the elastic and postyield regions. Analysis of variance was used to determine statistically significant differences based on lumbar spine level, radial position, and anatomical region of the disc.ResultsAnnular specimens demonstrated a nonlinear response consisting of the following: toe region, linear elastic region, yield point, postyield region, and ultimate failure point. Regional dependency was identified between deep and superficial fibers. Mechanical yield was evident prior to ultimate failure in 98% of the specimens and occurred at approximately 80% and 74% of the stress and strain, respectively, to ultimate failure. Fiber modulus decreased by 34% following yield.ConclusionsData in this study demonstrated that yielding of intervertebral disc fibers occurs relatively early in the mechanical response of the tissues and that stiffness is considerably decreased following yield. Therefore, yielding of annular fibers may result in decreased segmental stability, contributing to accelerated degeneration of bony components and possible idiopathic pain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…