• Pain · May 2020

    An unbiased and efficient assessment of excitability of sensory neurons for analgesic drug discovery.

    • Zainab A Mohammed, Katerina Kaloyanova, and Mohammed A Nassar.
    • Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.
    • Pain. 2020 May 1; 161 (5): 1100-1108.

    AbstractAlleviating chronic pain is challenging, due to lack of drugs that effectively inhibit nociceptors without off-target effects on motor or central neurons. Dorsal root ganglia (DRG) contain nociceptive and non-nociceptive neurons. Drug screening on cultured DRG neurons, rather than cell lines, allows for the identification of drugs most potent on nociceptors with no effects on non-nociceptors (as a proxy for unwanted side effects on central nervous system and motor neurons). However, screening using DRG neurons is currently a low-throughput process, and there is a need for assays to speed this process for analgesic drug discovery. We previously showed that veratridine elicits distinct response profiles in sensory neurons. Here, we show evidence that a veratridine-based calcium assay allows for an unbiased and efficient assessment of a drug effect on nociceptors (targeted neurons) and non-nociceptors (nontargeted neurons). We confirmed the link between the oscillatory profile and nociceptors, and the slow-decay profile and non-nociceptors using 3 transgenic mouse lines of known pain phenotypes. We used the assay to show that blockers for Nav1.7 and Nav1.8 channels, which are validated targets for analgesics, affect non-nociceptors at concentrations needed to effectively inhibit nociceptors. However, a combination of low doses of both blockers had an additive effect on nociceptors without a significant effect on non-nociceptors, indicating that the assay can also be used to screen for combinations of existing or novel drugs for the greatest selective inhibition of nociceptors.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.