-
- Matias Mosqueira, Güçlü Aykut, and Fink Rainer H A RHA Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Im Neuenheimer Feld 326,.
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany. matias@physiologie.uni-heidelberg.de.
- BMC Anesthesiol. 2020 Jan 8; 20 (1): 10.
BackgroundThe potential mechanism of mepivacaine's myocardial depressant effect observed in papillary muscle has not yet been investigated at cellular level. Therefore, we evaluated mepivacaine's effects on Ca2+ transient in isolated adult mouse cardiomyocytes.MethodsSingle ventricular myocytes were enzymatically isolated from wild-type C57Bl/6 mice and loaded with 10 μM fluorescent Ca2+ indicator Fluo-4-AM to record intracellular Ca2+ transients upon electrical stimulation. The mepivacaine effects at half-maximal inhibitory concentration (IC50) was determined on calibrated cardiomyocytes' Ca2+ transients by non-parametric statistical analyses on biophysical parameters. Combination of mepivacaine with NCX blockers ORM-10103 or NiCl2 were used to test a possible mechanism to explain mepivacaine-induced Ca2+ transients' reduction.ResultsA significant inhibition at mepivacaine's IC50 (50 μM) on Ca2+ transients was measured in biophysical parameters such as peak (control: 528.6 ± 73.61 nM vs mepivacaine: 130.9 ± 15.63 nM; p < 0.05), peak area (control: 401.7 ± 63.09 nM*s vs mepivacaine: 72.14 ± 10.46 nM*s; p < 0.05), slope (control: 7699 ± 1110 nM/s vs mepivacaine: 1686 ± 226.6 nM/s; p < 0.05), time to peak (control: 107.9 ± 8.967 ms vs mepivacaine: 83.61 ± 7.650 ms; p < 0.05) and D50 (control: 457.1 ± 47.16 ms vs mepivacaine: 284.5 ± 22.71 ms; p < 0.05). Combination of mepivacaine with NCX blockers ORM-10103 or NiCl2 showed a significant increase in the baseline of [Ca2+] and arrhythmic activity upon electrical stimulation.ConclusionAt cellular level, mepivacaine blocks Na+ channels, enhancing the reverse mode activity of NCX, leading to a significant reduction of Ca2+ transients. These results suggest a new mechanism for the mepivacaine-reduction contractility effect.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.