• Addiction biology · Mar 2014

    Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV).

    • Lucas R Watterson, Peter R Kufahl, Natali E Nemirovsky, Kaveish Sewalia, Megan Grabenauer, Brian F Thomas, Julie A Marusich, Scott Wegner, and Olive M Foster MF.
    • Department of Psychology, Arizona State University, Tempe, AZ, USA.
    • Addict Biol. 2014 Mar 1; 19 (2): 165-74.

    AbstractReports of abuse and toxic effects of synthetic cathinones, frequently sold as 'bath salts' or 'legal highs', have increased dramatically in recent years. One of the most widely used synthetic cathinones is 3,4-methylenedioxypyrovalerone (MDPV). The current study evaluated the abuse potential of MDPV by assessing its ability to support intravenous self-administration and to lower thresholds for intracranial self-stimulation (ICSS) in rats. In the first experiment, the rats were trained to intravenously self-administer MDPV in daily 2-hour sessions for 10 days at doses of 0.05, 0.1 or 0.2 mg/kg per infusion. The rats were then allowed to self-administer MDPV under a progressive ratio (PR) schedule of reinforcement. Next, the rats self-administered MDPV for an additional 10 days under short access (ShA; 2 hours/day) or long access (LgA; 6 hours/day) conditions to assess escalation of intake. A separate group of rats underwent the same procedures, with the exception of self-administering methamphetamine (0.05 mg/kg per infusion) instead of MDPV. In the second experiment, the effects of MDPV on ICSS thresholds following acute administration (0.1, 0.5, 1 and 2 mg/kg, i.p.) were assessed. MDPV maintained self-administration across all doses tested. A positive relationship between MDPV dose and breakpoints for reinforcement under PR conditions was observed. LgA conditions led to escalation of drug intake at 0.1 and 0.2 mg/kg doses, and rats self-administering methamphetamine showed similar patterns of escalation. Finally, MDPV significantly lowered ICSS thresholds at all doses tested. Together, these findings indicate that MDPV has reinforcing properties and activates brain reward circuitry, suggesting a potential for abuse and addiction in humans. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…