• Annals of surgery · Dec 2021

    Early Identification of Trauma-induced Coagulopathy: Development and Validation of a Multivariable Risk Prediction Model.

    • Zane B Perkins, Barbaros Yet, Max Marsden, Simon Glasgow, William Marsh, Ross Davenport, Karim Brohi, and TaiNigel R MNRMCentre for Trauma Sciences, Queen Mary, University of London. London, UK.Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, UK..
    • Centre for Trauma Sciences, Queen Mary, University of London. London, UK.
    • Ann. Surg. 2021 Dec 1; 274 (6): e1119-e1128.

    ObjectiveThe aim of this study was to develop and validate a risk prediction tool for trauma-induced coagulopathy (TIC), to support early therapeutic decision-making.BackgroundTIC exacerbates hemorrhage and is associated with higher morbidity and mortality. Early and aggressive treatment of TIC improves outcome. However, injured patients that develop TIC can be difficult to identify, which may compromise effective treatment.MethodsA Bayesian Network (BN) prediction model was developed using domain knowledge of the causal mechanisms of TIC, and trained using data from 600 patients recruited into the Activation of Coagulation and Inflammation in Trauma (ACIT) study. Performance (discrimination, calibration, and accuracy) was tested using 10-fold cross-validation and externally validated on data from new patients recruited at 3 trauma centers.ResultsRates of TIC in the derivation and validation cohorts were 11.8% and 11.0%, respectively. Patients who developed TIC were significantly more likely to die (54.0% vs 5.5%, P < 0.0001), require a massive blood transfusion (43.5% vs 1.1%, P < 0.0001), or require damage control surgery (55.8% vs 3.4%, P < 0.0001), than those with normal coagulation. In the development dataset, the 14-predictor BN accurately predicted this high-risk patient group: area under the receiver operating characteristic curve (AUROC) 0.93, calibration slope (CS) 0.96, brier score (BS) 0.06, and brier skill score (BSS) 0.40. The model maintained excellent performance in the validation population: AUROC 0.95, CS 1.22, BS 0.05, and BSS 0.46.ConclusionsA BN (http://www.traumamodels.com) can accurately predict the risk of TIC in an individual patient from standard admission clinical variables. This information may support early, accurate, and efficient activation of hemostatic resuscitation protocols.Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.