• Int. J. Biochem. Cell Biol. · Oct 2016

    UBE2D2 is not involved in MuRF1-dependent muscle wasting during hindlimb suspension.

    • Cécile Polge, Nathalie Koulmann, Agnès Claustre, Marianne Jarzaguet, Bernard Serrurier, Lydie Combaret, Daniel Béchet, Xavier Bigard, Didier Attaix, and Daniel Taillandier.
    • Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1019, Unité de Nutrition Humaine (UNH), Centre de Recherche en Nutrition Humaine (CNRH) Auvergne, Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, UNH, BP 10448, Clermont-Ferrand, France.
    • Int. J. Biochem. Cell Biol. 2016 Oct 1; 79: 488-493.

    AbstractThe Ubiquitin Proteasome System (UPS) is mainly responsible for the increased protein breakdown observed in muscle wasting. The E3 ligase MuRF1 is so far the only enzyme known to direct the main contractile proteins for degradation (i.e. troponin I, myosin heavy chains and actin). However, MuRF1 does not possess any catalytic activity and thus depends on the presence of a dedicated E2 for catalyzing the covalent binding of polyubiquitin (polyUb) chains on the substrates. The E2 enzymes belonging to the UBE2D family are commonly used for in vitro ubiquitination assays but no experimental data suggesting their physiological role as bona fide MuRF1-interacting E2 enzymes are available. In this work, we first found that the mRNA levels of critical E3 enzymes implicated in the atrophying program (MuRF1, MAFbx, Nedd4 and to a lesser extent Mdm2) are tightly and rapidly controlled during the atrophy (up regulation) and recovery (down regulation) phases in the soleus muscle from hindlimb suspended rats. By contrast, E3 ligases (Ozz, ASB2β and E4b) implicated in other processes (muscle development or regeneration) poorly responded to atrophy and recovery. UBE2B, an E2 enzyme systematically up regulated in various catabolic situations, was controlled at the mRNA levels like the E3s implicated in the atrophying process. By contrast, UBE2D2 was progressively repressed during atrophy and recovery, which makes it a poor candidate for a role during muscle atrophy. In addition, UBE2D2 did not exhibit any affinity with MuRF1 using either yeast two-hybrid or Surface Plasmon Resonance (SPR) approaches. Finally, UBE2D2 was unable to promote the degradation of the MuRF1 substrate α-actin in HEK293T cells, suggesting that no functional interaction exists between these enzymes within a cellular context. Altogether, our data strongly suggest that UBE2D2 is not the cognate ubiquitinating enzyme for MuRF1 and that peculiar properties of UBE2D enzymes may have biased in vitro ubiquitination assays.Copyright © 2016 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,704,841 articles already indexed!

We guarantee your privacy. Your email address will not be shared.