-
- Jonathan Elmer, Bobby L Jones, and Daniel S Nagin.
- Departments of Emergency Medicine, Critical Care Medicine and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address: elmerjp@upmc.edu.
- Resuscitation. 2020 Mar 1; 148: 152-160.
IntroductionPredicting outcome after cardiac arrest is challenging. We previously tested group-based trajectory modeling (GBTM) for prognostication based on baseline characteristics and quantitative electroencephalographic (EEG) trajectories. Here, we describe implementation of this method in a freely available software package and test its performance against alternative options.MethodsWe included comatose patients admitted to a single center after resuscitation from cardiac arrest from April 2010 to April 2019 who underwent ≥6 h of EEG monitoring. We abstracted clinical information from our prospective registry and summarized suppression ratio in 48 hourly epochs. We tested three classes of longitudinal models: frequentist, statistically based GBTMs; non-parametric (i.e. machine learning) k-means models; and Bayesian regression. Our primary outcome of interest was discharge CPC 1-3 (vs unconsciousness or death). We compared sensitivity for detecting poor outcome at a false positive rate (FPR) <1%.ResultsOf 1,010 included subjects, 250 (25%) were awake and alive at hospital discharge. GBTM and k-means derived trajectories, group sizes and group-specific outcomes were comparable. Conditional on an FPR < 1%, GBTMs yielded optimal sensitivity (38%) over 48 h. More sensitive methods had 2-3 % FPRs.ConclusionWe explored fundamentally different tools for patient-level predictions based on longitudinal and time-invariant patient data. Of the evaluated methods, GBTM resulted in optimal sensitivity while maintaining a false positive rate <1%. The provided code and software of this method provides an easy-to-use implementation for outcome prediction based on GBTMs.Copyright © 2020 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.