-
Experimental neurology · Oct 2016
Transient loss of consciousness during hypercapnia and hypoxia: Involvement of pathways associated with general anesthesia.
- Guy Meiri, Sa'ar Lanir, Anne Minert, and Marshall Devor.
- Department of Cell and Developmental Biology, Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Exp. Neurol. 2016 Oct 1; 284 (Pt A): 67-78.
AbstractTransient loss of consciousness (TLOC), frequently triggered by perturbation in essential physiological parameters such as pCO2 or O2, is considered a passive consequence of generalized degradation in high-level cerebral functioning. However, the fact that it is almost always accompanied by atonia and loss of spinal nocifensive reflexes suggests that it might actually be part of a "syndrome" mediated by neural circuitry, and ultimately be adaptive. Widespread suppression by molecules distributed in the vasculature is also the classical explanation of general anesthesia. Recent data, however, suggest that anesthesia is due, rather, to drug action at a specific brainstem locus, the mesopontine tegmental anesthesia area (MPTA), with the spectrum of anesthetic effects resulting from secondary recruitment of specific axonal pathways. If so, might the MPTA also be involved in TLOC induced by hypercapnia and hypoxia? We exposed rats to gas mixtures that provoke hypercapnia and hypoxia and asked whether cell-selective lesions of the MPTA affect TLOC. Entry into TLOC, monitored as time to loss of the righting reflex (LORR) was unaffected. However, resumption of the righting reflex (RORR), and of response to pinch stimuli (ROPR), was significantly delayed. The extent of both effects correlated with the extent of damage in the MPTA, but was unrelated to damage that extended beyond the borders of the MPTA. The results implicate neurons in a specific common-core region of the MPTA in TLOC induced by both forms of asphyxia. This is the same area responsible for general anesthesia induced by GABAergic anesthetic agents. This implies the involvement of a common set of brain nuclei and dedicated axonal pathways, rather than nonspecific global suppression, in the mechanism mediating all three instances of TLOC.Copyright © 2016 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.