• J. Clin. Invest. · Dec 1979

    Role of the liver in regulation of ketone body production during sepsis.

    • R W Wannemacher, J G Pace, R A Beall, R E Dinterman, V J Petrella, and H A Neufeld.
    • J. Clin. Invest. 1979 Dec 1; 64 (6): 1565-72.

    AbstractDuring caloric deprivation, the septic host may fail to develop ketonemia as an adaptation to starvation. Because the plasma ketone body concentration is a function of the ratio of hepatic production and peripheral usage, a pneumococcal sepsis model was used in rats to measure the complex metabolic events that could account for this failure, including the effects of infection on lipolysis and esterification in adipose tissue, fatty acid transport in plasma and the rates of hepatic ketogenesis and whole body oxidation of ketones. Some of the studies were repeated with tularemia as the model infection. From these studies, it was concluded that during pneumococcal sepsis, the failure of rats to become ketonemic during caloric deprivation was the result of reduced ketogenic capacity of the liver and a possibly decreased hepatic supply of fatty acids. The latter appeared to be a secondary consequence of a severe reduction in circulating plasma albumin, the major transport protein for fatty acids, with no effect on the degree of saturation of the albumin with free fatty acids. Also, the infection had no significant effect on the rate of lipolysis or release of fatty acids from adipose tissue. Ketone body usage (oxidation) was either unaffected or reduced during pneumococcal sepsis in rats. Thus, a reduced rate of ketone production in the infected host was primarily responsible for the failure to develop starvation ketonemia under these conditions. The liver of the infected rat host appears to shuttle the fatty acids away from beta-oxidation and ketogenesis and toward triglyceride production, with resulting hepatocellular fatty metamorphosis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.