• Bone · Mar 2015

    A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery.

    • Jason A Inzana, Edward M Schwarz, Stephen L Kates, and Hani A Awad.
    • Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, United States; Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, NY 14642, United States. Electronic address: jason.inzana@rochester.edu.
    • Bone. 2015 Mar 1; 72: 128-36.

    AbstractMice are the small animal model of choice in biomedical research due to the low cost and availability of genetically engineered lines. However, the devices utilized in current mouse models of implant-associated bone infection have been limited to intramedullary or trans-cortical pins, which are not amenable to treatments involving extensive debridement of a full-thickness bone loss and placement of a segmental antibiotic spacer. To overcome these limitations, we developed a clinically faithful model that utilizes a locking fracture fixation plate to enable debridement of an infected segmental bone defect (full-thickness osteotomy) during a revision surgery, and investigated the therapeutic effects of placing an antibiotic-laden spacer in the segmental bone defect. To first determine the ideal time point for revision following infection, a 0.7 mm osteotomy in the femoral mid-shaft was stabilized with a radiolucent PEEK fixation plate. The defect was inoculated with bioluminescent Staphylococcus aureus, and the infection was monitored over 14 days by bioluminescent imaging (BLI). Osteolysis and reactive bone formation were assessed by X-ray and micro-computed tomography (micro-CT). The active bacterial infection peaked by 5 days post-inoculation, however the stability of the implant fixation became compromised by 10-14 days post-inoculation due to osteolysis around the screws. Thus, day 7 was defined as the ideal time point to perform the revision surgery. During the revision surgery, the infected tissue was debrided and the osteotomy was widened to 3mm to place a poly-methyl methacrylate spacer, with or without vancomycin. Half of the groups also received systemic vancomycin for the remaining 21 days of the study. The viable bacteria remaining at the end of the study were measured using colony forming unit assays. Volumetric bone changes (osteolysis and reactive bone formation) were directly measured using micro-CT image analysis. Mice that were treated with local or systemic vancomycin did not display gross pathology at the end of the study. While localized vancomycin delivery alone tended to decrease the bacterial burden and osteolysis, these effects were only significant when combined with systemic antibiotic therapy. This novel mouse model replicates key features of implant-associated osteomyelitis that make treatment extremely difficult, such as biofilm formation and osteolysis, and imitates the clinical practice of placing an antibiotic-laden spacer after infected tissue debridement. In addition, the model demonstrates the limitations of current PMMA spacers and could be an invaluable tool for evaluating alternative antimicrobial treatments for implant-associated bone infection.Copyright © 2014 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.