• Cochrane Db Syst Rev · Jun 2017

    Review Meta Analysis

    Interventions for the prevention of recurrent erysipelas and cellulitis.

    • Adam Dalal, Marina Eskin-Schwartz, Daniel Mimouni, Sujoy Ray, Walford Days, Emmilia Hodak, Leonard Leibovici, and Mical Paul.
    • Department of Dermatology, Beilinson Hospital, Rabin Medical Center, 39 Jabotinski Street, Petah Tikva, Israel, 49100.
    • Cochrane Db Syst Rev. 2017 Jun 20; 6 (6): CD009758CD009758.

    BackgroundErysipelas and cellulitis (hereafter referred to as 'cellulitis') are common bacterial skin infections usually affecting the lower extremities. Despite their burden of morbidity, the evidence for different prevention strategies is unclear.ObjectivesTo assess the beneficial and adverse effects of antibiotic prophylaxis or other prophylactic interventions for the prevention of recurrent episodes of cellulitis in adults aged over 16.Search MethodsWe searched the following databases up to June 2016: the Cochrane Skin Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and LILACS. We also searched five trials registry databases, and checked reference lists of included studies and reviews for further references to relevant randomised controlled trials (RCTs). We searched two sets of dermatology conference proceedings, and BIOSIS Previews.Selection CriteriaRandomised controlled trials evaluating any therapy for the prevention of recurrent cellulitis.Data Collection And AnalysisTwo authors independently carried out study selection, data extraction, assessment of risks of bias, and analyses. Our primary prespecified outcome was recurrence of cellulitis when on treatment and after treatment. Our secondary outcomes included incidence rate, time to next episode, hospitalisation, quality of life, development of resistance to antibiotics, adverse reactions and mortality.Main ResultsWe included six trials, with a total of 573 evaluable participants, who were aged on average between 50 and 70. There were few previous episodes of cellulitis in those recruited to the trials, ranging between one and four episodes per study.Five of the six included trials assessed prevention with antibiotics in participants with cellulitis of the legs, and one assessed selenium in participants with cellulitis of the arms. Among the studies assessing antibiotics, one study evaluated oral erythromycin (n = 32) and four studies assessed penicillin (n = 481). Treatment duration varied from six to 18 months, and two studies continued to follow up participants after discontinuation of prophylaxis, with a follow-up period of up to one and a half to two years. Four studies were single-centre, and two were multicentre; they were conducted in five countries: the UK, Sweden, Tunisia, Israel, and Austria.Based on five trials, antibiotic prophylaxis (at the end of the treatment phase ('on prophylaxis')) decreased the risk of cellulitis recurrence by 69%, compared to no treatment or placebo (risk ratio (RR) 0.31, 95% confidence interval (CI) 0.13 to 0.72; n = 513; P = 0.007), number needed to treat for an additional beneficial outcome (NNTB) six, (95% CI 5 to 15), and we rated the certainty of evidence for this outcome as moderate.Under prophylactic treatment and compared to no treatment or placebo, antibiotic prophylaxis reduced the incidence rate of cellulitis by 56% (RR 0.44, 95% CI 0.22 to 0.89; four studies; n = 473; P value = 0.02; moderate-certainty evidence) and significantly decreased the rate until the next episode of cellulitis (hazard ratio (HR) 0.51, 95% CI 0.34 to 0.78; three studies; n = 437; P = 0.002; moderate-certainty evidence).The protective effects of antibiotic did not last after prophylaxis had been stopped ('post-prophylaxis') for risk of cellulitis recurrence (RR 0.88, 95% CI 0.59 to 1.31; two studies; n = 287; P = 0.52), incidence rate of cellulitis (RR 0.94, 95% CI 0.65 to 1.36; two studies; n = 287; P = 0.74), and rate until next episode of cellulitis (HR 0.78, 95% CI 0.39 to 1.56; two studies; n = 287). Evidence was of low certainty.Effects are relevant mainly for people after at least two episodes of leg cellulitis occurring within a period up to three years.We found no significant differences in adverse effects or hospitalisation between antibiotic and no treatment or placebo; for adverse effects: RR 0.87, 95% CI 0.58 to 1.30; four studies; n = 469; P = 0.48; for hospitalisation: RR 0.77, 95% CI 0.37 to 1.57; three studies; n = 429; P = 0.47, with certainty of evidence rated low for these outcomes. The existing data did not allow us to fully explore its impact on length of hospital stay.The common adverse reactions were gastrointestinal symptoms, mainly nausea and diarrhoea; rash (severe cutaneous adverse reactions were not reported); and thrush. Three studies reported adverse effects that led to discontinuation of the assigned therapy. In one study (erythromycin), three participants reported abdominal pain and nausea, so their treatment was changed to penicillin. In another study, two participants treated with penicillin withdrew from treatment due to diarrhoea or nausea. In one study, around 10% of participants stopped treatment due to pain at the injection site (the active treatment group was given intramuscular injections of benzathine penicillin).None of the included studies assessed the development of antimicrobial resistance or quality-of-life measures.With regard to the risks of bias, two included studies were at low risk of bias and we judged three others as being at high risk of bias, mainly due to lack of blinding.Authors' ConclusionsIn terms of recurrence, incidence, and time to next episode, antibiotic is probably an effective preventive treatment for recurrent cellulitis of the lower limbs in those under prophylactic treatment, compared with placebo or no treatment (moderate-certainty evidence). However, these preventive effects of antibiotics appear to diminish after they are discontinued (low-certainty evidence). Treatment with antibiotic does not trigger any serious adverse events, and those associated are minor, such as nausea and rash (low-certainty evidence). The evidence is limited to people with at least two past episodes of leg cellulitis within a time frame of up to three years, and none of the studies investigated other common interventions such as lymphoedema reduction methods or proper skin care. Larger, high-quality studies are warranted, including long-term follow-up and other prophylactic measures.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…