• Lancet neurology · Mar 2020

    Multicenter Study Observational Study

    Associations of paediatric demyelinating and encephalitic syndromes with myelin oligodendrocyte glycoprotein antibodies: a multicentre observational study.

    • Thaís Armangue, Gemma Olivé-Cirera, Eugenia Martínez-Hernandez, Maria Sepulveda, Raquel Ruiz-Garcia, Marta Muñoz-Batista, Helena Ariño, Veronica González-Álvarez, Ana Felipe-Rucián, Maria Jesús Martínez-González, Veronica Cantarín-Extremera, Maria Concepción Miranda-Herrero, Lorena Monge-Galindo, Miguel Tomás-Vila, Elena Miravet, Ignacio Málaga, Georgina Arrambide, Cristina Auger, Mar Tintoré, Xavier Montalban, Adeline Vanderver, Francesc Graus, Albert Saiz, Josep Dalmau, and Spanish Pediatric anti-MOG Study Group.
    • Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Pediatric Neuroimmunology Unit, Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona, Barcelona, Spain. Electronic address: tarmangue@sjdhospitalbarcelona.org.
    • Lancet Neurol. 2020 Mar 1; 19 (3): 234-246.

    BackgroundInvestigations of myelin oligodendrocyte glycoprotein (MOG) antibodies are usually focused on demyelinating syndromes, but the entire spectrum of MOG antibody-associated syndromes in children is unknown. In this study, we aimed to determine the frequency and distribution of paediatric demyelinating and encephalitic syndromes with MOG antibodies, their response to treatment, and the phenotypes associated with poor prognosis.MethodsIn this prospective observational study, children with demyelinating syndromes and with encephalitis other than acute disseminated encephalomyelitis (ADEM) recruited from 40 secondary and tertiary centres in Spain were investigated for MOG antibodies. All MOG antibody-positive cases were included in our study, which assessed syndromes, treatment and response to treatment (ie, number of relapses), outcomes (measured with the modified Rankin scale [mRS]), and phenotypes associated with poor prognosis. We used Fisher's exact and Wilcoxon rank sum tests to analyse clinical features, and survival Cox regression to analyse time to antibody negativity.FindingsBetween June 1, 2013, and Dec 31, 2018, 239 children with demyelinating syndromes (cohort A) and 296 with encephalitis other than ADEM (cohort B) were recruited. 116 patients had MOG antibodies, including 94 (39%) from cohort A and 22 (7%) from cohort B; 57 (49%) were female, with a median age of 6·2 years (IQR 3·7-10·0). Presenting syndromes in these 116 patients included ADEM (46 [68%]), encephalitis other than ADEM (22 [19%]), optic neuritis (20 [17%]), myelitis (13 [11%]), neuromyelitis optica spectrum disorders (six [5%]), and other disorders (nine [8%]). Among the patients with autoimmune encephalitis in cohort B (n=64), MOG antibodies were more common than all neuronal antibodies combined (22 [34%] vs 21 [33%]). After a median follow-up of 42 months (IQR 22-67), 33 (28%) of the 116 patients had relapses, including 17 (17%) of 100 diagnosed at first episode. Steroids, intravenous immunoglobulin, or plasma exchange were used in 100 (86%) patients at diagnosis, and 32 (97%) of 33 at relapses. Rituximab was mainly used at relapses (11 [33%]). 99 (85%) of 116 patients had substantial recovery (mRS <2) and 17 (15%) moderate to severe deficits (mRS >2; one died). Phenotypes of poor prognosis included ADEM-like relapses progressing to leukodystrophy-like features, and extensive cortical encephalitis evolving to atrophy. Time to antibody negativity was longer in patients with relapses (HR 0·18, 95% CI 0·05-0·59).InterpretationThe spectrum of paediatric MOG antibody-associated syndromes is wider than previously reported and includes demyelinating syndromes and encephalitis. Recognition of these disorders has important clinical and prognostic implications.FundingMutua Madrileña Foundation; ISCIII-Subdirección General de Evaluación y Fomento de la Investigación Sanitaria; Fondo Europeo de Desarrollo Regional; Pediatrics Spanish Society; Departament de Salut, Generalitat de Catalunya; Marato TV3 Foundation; Red Española de Esclerosis Múltiple; La Caixa Foundation; and Fundació CELLEX.Copyright © 2020 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…