-
- Aladine A Elsamadicy, David T Lubkin, Amanda R Sergesketter, Syed M Adil, Lefko T Charalambous, Nicolas Drysdale, Theresa Williamson, Joaquin Camara-Quintana, Muhammad M Abd-El-Barr, C Rory Goodwin, and Isaac O Karikari.
- 1Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut; and.
- J Neurosurg Spine. 2019 Jan 11; 30 (3): 376-381.
AbstractOBJECTIVEIn the United States, healthcare expenditures have been soaring at a concerning rate. There has been an excessive use of postoperative radiographs after spine surgery and this has been a target for hospitals to reduce unnecessary costs. However, there are only limited data identifying the rate of instrumentation changes on radiographs after complex spine surgery involving ≥ 5-level fusions.METHODSThe medical records of 136 adult (≥ 18 years old) patients with spine deformity undergoing elective, primary complex spinal fusion (≥ 5 levels) for deformity correction at a major academic institution between 2010 and 2015 were reviewed. Patient demographics, comorbidities, and intra- and postoperative complication rates were collected for each patient. The authors reviewed the first 5 subsequent postoperative and follow-up radiographs, and determined whether revision of surgery was performed within 5 years postoperatively. The primary outcome investigated in this study was the rate of hardware changes on follow-up radiographs.RESULTSThe majority of patients were female, with a mean age of 53.8 ± 20.0 years and a body mass index of 27.3 ± 6.2 kg/m2 (parametric data are expressed as the mean ± SD). The median number of fusion levels was 9 (interquartile range 7-13), with a mean length of surgery of 327.8 ± 124.7 minutes and an estimated blood loss of 1312.1 ± 1269.2 ml. The mean length of hospital stay was 6.6 ± 3.9 days, with a 30-day readmission rate of 14.0%. Postoperative and follow-up change in stability on radiographs (days from operation) included: image 1 (4.6 ± 9.3 days) 0.0%; image 2 (51.7 ± 49.9 days) 3.0%; image 3 (142.1 ± 179.8 days) 5.6%; image 4 (277.3 ± 272.5 days) 11.3%; and image 5 (463.1 ± 525.9 days) 15.7%. The 3rd year after surgery had the highest rate of hardware revision (5.55%), followed by the 2nd year (4.68%), and the 1st year (4.54%).CONCLUSIONSThis study suggests that the rate of instrumentation changes on radiographs increases over time, with no changes occurring at the first postoperative image. In an era of cost-conscious healthcare, fewer orders for early radiographs after complex spinal fusions (≥ 5 levels) may not impact patient care and can reduce the overall use of healthcare resources.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.