• Sheng Wu Yi Xue Gong Cheng Xue Za Zhi · Jun 2019

    [Automatic classification method of arrhythmia based on discriminative deep belief networks].

    • Lixin Song, Dongzi Sun, Qian Wang, and Yujing Wang.
    • School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P.R.China.lixinsong@hrbust.edu.cn.
    • Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Jun 25; 36 (3): 444-452.

    AbstractExisting arrhythmia classification methods usually use manual selection of electrocardiogram (ECG) signal features, so that the feature selection is subjective, and the feature extraction is complex, leaving the classification accuracy usually affected. Based on this situation, a new method of arrhythmia automatic classification based on discriminative deep belief networks (DDBNs) is proposed. The morphological features of heart beat signals are automatically extracted from the constructed generative restricted Boltzmann machine (GRBM), then the discriminative restricted Boltzmann machine (DRBM) with feature learning and classification ability is introduced, and arrhythmia classification is performed according to the extracted morphological features and RR interval features. In order to further improve the classification performance of DDBNs, DDBNs are converted to deep neural network (DNN) using the Softmax regression layer for supervised classification in this paper, and the network is fine-tuned by backpropagation. Finally, the Massachusetts Institute of Technology and Beth Israel Hospital Arrhythmia Database (MIT-BIH AR) is used for experimental verification. For training sets and test sets with consistent data sources, the overall classification accuracy of the method is up to 99.84% ± 0.04%. For training sets and test sets with inconsistent data sources, a small number of training sets are extended by the active learning (AL) method, and the overall classification accuracy of the method is up to 99.31% ± 0.23%. The experimental results show the effectiveness of the method in arrhythmia automatic feature extraction and classification. It provides a new solution for the automatic extraction of ECG signal features and classification for deep learning.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.