-
Kidney international · Jul 2000
Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds.
- T Miyata, K Horie, Y Ueda, Y Fujita, Y Izuhara, H Hirano, K Uchida, A Saito, C van Ypersele de Strihou, and K Kurokawa.
- Molecular and Cellular Nephrology, Institute of Medical Sciences, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan.
- Kidney Int. 2000 Jul 1; 58 (1): 425-35.
BackgroundAdvanced glycation of proteins has been incriminated in the progressive alteration of the peritoneal membrane during chronic peritoneal dialysis (PD). Advanced glycation end products (AGEs) result from a modification of proteins by reactive carbonyl compounds (RCOs). RCOs resulting from glucose breakdown are present in commercial PD fluid. They also accumulate in uremic plasma. The present study was undertaken to evaluate the respective contribution of these two sources of RCOs in the genesis of peritoneal AGEs.MethodsThree major RCOs formed during heat sterilization of PD fluid, that is, glyoxal, methylglyoxal, and 3-deoxyglucosone, and total RCOs were measured in commercial PD fluid and in PD effluent. The generation of pentosidine, used as a surrogate marker for AGEs, during one-week incubations of PD fluid and effluent samples fortified with bovine serum albumin (BSA) was measured by high-performance liquid chromatography. Peritoneal samples were stained with antibodies specific for two AGEs derived from carbohydrate-dependent RCOs, Nepsilon-(carboxymethyl)lysine (CML) and pentosidine, or for two advanced lipoxidation end products (ALEs) derived from lipid-dependent RCOs, malondialdehyde (MDA)-lysine and 4-hydroxynonenal (HNE)-protein adduct.ResultsGlyoxal, methylglyoxal, and 3-deoxyglucosone were identified in commercial PD fluid. Their levels in PD effluents decreased with dwell time probably by diffusion into blood circulation. In contrast, the levels of total RCOs were initially low in commercial PD fluid, increased in PD effluent with dwell time probably by diffusion from circulation into the peritoneal cavity, and after 12 hours, reached values observed in uremic serum. The relevance of the rise in total RCOs for AGE formation is demonstrated by a parallel increase in the generation of pentosidine during incubations of PD effluents. In contrast with RCOs present in glucose-rich PD fluid, RCOs diffusing from uremic circulation originate from both carbohydrates and lipids. Their role in the modification of peritoneal proteins is demonstrated by the immunohistochemical study of peritoneal tissue. Two AGEs and two ALEs increase in parallel in the mesothelial layers and in vascular wall of small arteries in the peritoneum.ConclusionsProtein modification of the peritoneum is determined not only by RCOs originating in PD fluid, but also by RCOs originating from the uremic circulation. The present data might be relevant to current attempts to improve PD fluid toxicity by lowering its glucose content.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.