• Am J Emerg Med · Feb 2021

    Two-step predictive model for early detection of emergency department patients with prolonged stay and its management implications.

    • James P d'Etienne, Yuan Zhou, Chen Kan, Sajid Shaikh, Amy F Ho, Eniola Suley, Erica C Blustein, Chet D Schrader, Nestor R Zenarosa, and Hao Wang.
    • Department of Emergency Medicine, John Peter Smith Health Network, 1500 S. Main St., Fort Worth, TX 76104, USA. Electronic address: jdetienn@jpshealth.org.
    • Am J Emerg Med. 2021 Feb 1; 40: 148-158.

    ObjectiveTo develop a novel model for predicting Emergency Department (ED) prolonged length of stay (LOS) patients upon triage completion, and further investigate the benefit of a targeted intervention for patients with prolonged ED LOS.Materials And MethodsA two-step model to predict patients with prolonged ED LOS (>16 h) was constructed. This model was initially used to predict ED resource usage and was subsequently adapted to predict patient ED LOS based on the number of ED resources using binary logistic regressions and was validated internally with accuracy. Finally, a discrete event simulation was used to move patients with predicted prolonged ED LOS directly to a virtual Clinical Decision Unit (CDU). The changes of ED crowding status (Overcrowding, Crowding, and Not-Crowding) and savings of ED bed-hour equivalents were estimated as the measures of the efficacy of this intervention.ResultsWe screened a total of 123,975 patient visits with final enrollment of 110,471 patient visits. The overall accuracy of the final model predicting prolonged patient LOS was 67.8%. The C-index of this model ranges from 0.72 to 0.82. By implementing the proposed intervention, the simulation showed a 12% (1044/8760) reduction of ED overcrowded status - an equivalent savings of 129.3 ED bed-hours per day.ConclusionsEarly prediction of prolonged ED LOS patients and subsequent (simulated) early CDU transfer could lead to more efficiently utilization of ED resources and improved efficacy of ED operations. This study provides evidence to support the implementation of this novel intervention into real healthcare practice.Copyright © 2020. Published by Elsevier Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…