• Respiratory care · Oct 2020

    Oxygen Conservation Methods With Automated Titration.

    • Stéphane Bourassa, Pierre-Alexandre Bouchard, Marc Dauphin, and François Lellouche.
    • Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.
    • Respir Care. 2020 Oct 1; 65 (10): 1433-1442.

    BackgroundOxygen titration is recommended to avoid hyperoxemia and hypoxemia. Automated titration, as well as the [Formula: see text] target, may have an impact on oxygen utilization, with potential logistical effects in emergency and military transportation. We sought to assess the oxygen flow required for different [Formula: see text] targets in spontaneously breathing subjects, and to evaluate individualized automated oxygen titration to maintain stable oxygenation in subjects with COPD and healthy subjects with induced hypoxemia.MethodsIn the first part of the study, oxygen flow was evaluated in hospitalized subjects for different [Formula: see text] targets from 90% to 98%. Oxygen requirements to reach these targets were determined using a device that automatically adjusts oxygen flow every second on the basis of the [Formula: see text] target. In the second part of the study, the same automated oxygen titration method was used to correct hypoxemia in subjects with COPD and in healthy subjects with induced hypoxemia while the subjects wore a gas mask. Oxygen flow, [Formula: see text], and heart rate were continuously recorded.ResultsThirty-six spontaneously breathing hospitalized subjects were included in the first part of the study. Oxygen flow was reduced more than 6-fold when the [Formula: see text] target was decreased from 98% to 90%. The second part of the study included 15 healthy and 9 subjects with stable COPD. In healthy subjects, heterogeneous oxygen flows were required to correct induced hypoxemia (0.2-2.5 L/min). In subjects with COPD, oxygen flow varied from 0 L/min (in 9 of 18 tested conditions) to 2.9 L/min.ConclusionsSignificant reductions in the amount of oxygen delivered could be obtained with optimized [Formula: see text] targets. Oxygen delivery through a gas mask to correct hypoxemia is feasible, and automated oxygen titration may help individualize oxygen administration and reduce oxygen utilization. (ClinicalTrials.gov registration: NCT02782936, NCT02809807.).Copyright © 2020 by Daedalus Enterprises.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.