-
- R Todd Pressler and Ben W Strowbridge.
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106.
- J. Neurosci. 2017 Dec 6; 37 (49): 11774-11788.
AbstractThe olfactory bulb contains excitatory principal cells (mitral and tufted cells) that project to cortical targets as well as inhibitory interneurons. How the local circuitry in this region facilitates odor-specific output is not known, but previous work suggests that GABAergic granule cells plays an important role, especially during fine odor discrimination. Principal cells interact with granule cells through reciprocal dendrodendritic connections that are poorly understood. While many studies examined the GABAergic output side of these reciprocal connections, little is known about how granule cells are excited. Only two previous studies reported monosynaptically coupled mitral/granule cell connections and neither attempted to determine the fundamental properties of these synapses. Using dual intracellular recordings and a custom-built loose-patch amplifier, we have recorded unitary granule cell EPSPs evoked in response to mitral cell action potentials in rat (both sexes) brain slices. We find that the unitary dendrodendritic input is relatively weak with highly variable release probability and short-term depression. In contrast with the weak dendrodendritic input, the facilitating cortical input to granule cells is more powerful and less variable. Our computational simulations suggest that dendrodendritic synaptic properties prevent individual principal cells from strongly depolarizing granule cells, which likely discharge in response to either concerted activity among a large proportion of inputs or coactivation of a smaller subset of local dendrodendritic inputs with coincidence excitation from olfactory cortex. This dual-pathway requirement likely enables the sparse mitral/granule cell interconnections to develop highly odor-specific responses that facilitate fine olfactory discrimination.SIGNIFICANCE STATEMENT The olfactory bulb plays a central role in converting broad, highly overlapping, sensory input patterns into odor-selective population responses. How this occurs is not known, but experimental and theoretical studies suggest that local inhibition often plays a central role. Very little is known about how the most common local interneuron subtype, the granule cell, is excited during odor processing beyond the unusual anatomical arraignment of the interconnections (reciprocal dendrodendritic synapses). Using paired recordings and two-photon imaging, we determined the properties of the primary input to granule cells for the first time and show that these connections bias interneurons to fire in response to spiking in large populations of principal cells rather than a small group of highly active cells.Copyright © 2017 the authors 0270-6474/17/3711774-15$15.00/0.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.