-
- Tamami Moriya, Chunfeng Zhao, Kai-Nan An, and Peter C Amadio.
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA.
- J Hand Surg Am. 2010 Apr 1; 35 (4): 552-8.
PurposeTo investigate the effects of motion following repair with a modified Kessler core suture and 5 different epitendinous suture designs on the gliding resistance, breaking strength, 2-mm gap force, and stiffness of flexor digitorum profundus tendons in a human in vitro model.MethodsThe flexor digitorum profundus tendons of the index, middle, ring, and little fingers of 50 human cadavers were transected and repaired with a 2-strand modified Kessler suture and assigned to 5 groups based on type of epitendinous suture design. The 5 epitendinous designs tested were a simple, running epitendinous suture whose knot was outside the repair (simple running KO); a simple, running epitendinous suture whose knot was inside the repair (simple running KI); a cross-stitch epitendinous suture; an interlocking, horizontal mattress (IHM) epitendinous suture; and a running-locking epitendinous suture. The tendon repair strength and 2-mm gap force were measured after 1,000 cycles of tendon motion. The resistance to gap formation, a measure of repair stiffness, was obtained from the force versus gap data.ResultsNone of the repairs showed any gap formation after 1,000 cycles of tendon motion. The cross-stitch epitendinous suture, IHM epitendinous suture, and running-locking epitendinous suture all had significantly lower gliding resistance than the simple running KO epitendinous suture after 1 cycle. The simple running KI epitendinous suture had significantly lower gliding resistance than the simple running KO epitendinous suture after 100 cycles and 1,000 cycles. The differences for gap force at 2 mm and stiffness of the repaired tendon evaluation were not statistically significant. The cross-stitch epitendinous suture, IHM epitendinous suture, and running-locking epitendinous suture all had significantly higher maximal failure strength after 1,000 cycles than the simple running KI epitendinous suture.ConclusionsThe cross-stitch, IHM, and running-locking epitendinous sutures had the best combination of higher strength and lower gliding resistance in this study. Although these findings suggest a potential for these suture types to be preferred as epitendinous sutures, these repairs should first be investigated in vivo to address their effect on tendon healing and adhesion formation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.