• Crit Care · Mar 2020

    Brain BOLD MRI O2 and CO2 stress testing: implications for perioperative neurocognitive disorder following surgery.

    • Mutch W Alan C WAC 0000-0001-7174-7839 Department of Anesthesiology, Perioperative and Pain Medicine, Max Rady College of Medicine, University of Mani, Renée El-Gabalawy, Lawrence Ryner, Josep Puig, Marco Essig, Kayla Kilborn, Kelsi Fidler, and M Ruth Graham.
    • Department of Anesthesiology, Perioperative and Pain Medicine, Max Rady College of Medicine, University of Manitoba, 2nd Floor, Harry Medovy House, 671 William Ave., Winnipeg, MB, R3E 0Z2, Canada. wacmutch@shaw.ca.
    • Crit Care. 2020 Mar 4; 24 (1): 76.

    BackgroundMechanical ventilation to alter and improve respiratory gases is a fundamental feature of critical care and intraoperative anesthesia management. The range of inspired O2 and expired CO2 during patient management can significantly deviate from values in the healthy awake state. It has long been appreciated that hyperoxia can have deleterious effects on organs, especially the lung and retina. Recent work shows intraoperative end-tidal (ET) CO2 management influences the incidence of perioperative neurocognitive disorder (POND). The interaction of O2 and CO2 on cerebral blood flow (CBF) and oxygenation with alterations common in the critical care and operating room environments has not been well studied.MethodsWe examine the effects of controlled alterations in both ET O2 and CO2 on cerebral blood flow (CBF) in awake adults using blood oxygenation level-dependent (BOLD) and pseudo-continuous arterial spin labeling (pCASL) MRI. Twelve healthy adults had BOLD and CBF responses measured to alterations in ET CO2 and O2 in various combinations commonly observed during anesthesia.ResultsDynamic alterations in regional BOLD and CBF were seen in all subjects with expected and inverse brain voxel responses to both stimuli. These effects were incremental and rapid (within seconds). The most dramatic effects were seen with combined hyperoxia and hypocapnia. Inverse responses increased with age suggesting greater risk.ConclusionsHuman CBF responds dramatically to alterations in ET gas tensions commonly seen during anesthesia and in critical care. Such alterations may contribute to delirium following surgery and under certain circumstances in the critical care environment.Trial RegistrationClincialTrials.gov NCT02126215 for some components of the study. First registered April 29, 2014.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…