• Eur J Pain · Jul 2020

    Randomized Controlled Trial

    Anodal transcranial direct current stimulation over the primary motor cortex attenuates capsaicin-induced dynamic mechanical allodynia and mechanical pain sensitivity in humans.

    • Sam W Hughes, Grace Ward, and Paul H Strutton.
    • The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK.
    • Eur J Pain. 2020 Jul 1; 24 (6): 1130-1137.

    BackgroundAnodal transcranial direct current stimulation over the primary cortex has been shown to activate regions of the brain involved in the descending modulation of pain sensitivity. However, more research is required to dissect the spinal cord analgesic mechanisms associated with the development of central sensitization.MethodsIn this randomized, double blind, crossover study 12 healthy participants had baseline mechanical stimulus response (S/R) functions measured before and after the development of capsaicin-induced ongoing pain sensitivity. The effects of 20 min of either real or sham transcranial direct current stimulation (tDCS, 2 mA) over the primary motor cortex on dynamic mechanical allodynia (DMA) and mechanical pain sensitivity (MPS) were then investigated.ResultsTopical application of capsaicin resulted in an increase in area under the pain ratings curve for both DMA (p < .01) and MPS (p < .01). The effects of tDCS on the area under the curve ratio (i.e. post-/pre-treatment) revealed significant analgesic effects over DMA (p < .05) and MPS (p < .05) when compared with sham.ConclusionsThis study demonstrates that anodal tDCS over the primary motor cortex can reduce both dynamic and static forms of mechanical pain sensitivity associated with the development of DMA and MPS, respectively. The use of tDCS may provide a novel mechanism-driven therapy in chronic pain patients with altered mechanical S/R functions.SignificanceThis research shows new evidence that anodal tDCS over the primary motor cortex can reduce dynamic and static forms of mechanical pain sensitivity in the capsaicin model of ongoing pain. By using this approach, it may be possible to provide mechanism-driven analgesia in chronic pain patients who have dynamic mechanical allodynia and/or secondary mechanical hyperalgesia.© 2020 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC ®.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…