-
- Victor E Staartjes, Ayesha Quddusi, Anita M Klukowska, and Marc L Schröder.
- Machine Intelligence in Clinical Neuroscience (MICN) Lab, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland. victor.staartjes@gmail.com.
- Eur Spine J. 2020 Jul 1; 29 (7): 1702-1708.
ObjectiveThe five-repetition sit-to-stand (5R-STS) test was designed to capture objective functional impairment and thus provided an adjunctive dimension in patient assessment. The clinical interpretability and confounders of the 5R-STS remain poorly understood. In clinical use, it became apparent that 5R-STS performance may differ between patients with lumbar disk herniation (LDH), lumbar spinal stenosis (LSS) with or without low-grade spondylolisthesis, and chronic low back pain (CLBP). We seek to evaluate the extent of diagnostic information contained within 5R-STS testing.MethodsPatients were classified into gold standard diagnostic categories based on history, physical examination, and imaging. Crude and adjusted comparisons of 5R-STS performance were carried out among the three diagnostic categories. Subsequently, a machine learning algorithm was trained to classify patients into the three categories using only 5R-STS test time and patient age, gender, height, and weight.ResultsFrom two prospective studies, 262 patients were included. Significant differences in crude and adjusted test times were observed among the three diagnostic categories. At internal validation, classification accuracy was 96.2% (95% CI 87.099.5%). Classification sensitivity was 95.7%, 100%, and 100% for LDH, LSS, and CLBP, respectively. Similarly, classification specificity was 100%, 95.7%, and 100% for the three diagnostic categories.Conclusion5R-STS performance differs according to the etiology of back and leg pain, even after adjustment for demographic covariates. In combination with machine learning algorithms, OFI can be used to infer the etiology of spinal back and leg pain with accuracy comparable to other diagnostic tests used in clinical examination. These slides can be retrieved under Electronic Supplementary Material.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.