• J. Appl. Physiol. · Mar 2011

    Effects of inhaled nitric oxide at rest and during exercise in idiopathic pulmonary fibrosis.

    • Isabel Blanco, Jesús Ribas, Antoni Xaubet, Federico P Gómez, Josep Roca, Robert Rodriguez-Roisin, and Joan A Barberà.
    • Department of Pulmonary Medicine, Institut Clínic del Tórax, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.
    • J. Appl. Physiol. 2011 Mar 1; 110 (3): 638-45.

    AbstractPatients with idiopathic pulmonary fibrosis (IPF) usually develop hypoxemia and pulmonary hypertension when exercising. To what extent endothelium-derived vasodilating agents modify these changes is unknown. The study was aimed to investigate in patients with IPF whether exercise induces changes in plasma levels of endothelium-derived signaling mediators, and to assess the acute effects of inhaled nitric oxide (NO) on pulmonary hemodynamics and gas exchange, at rest and during exercise. We evaluated seven patients with IPF (6 men/1 woman; 57 ± 11 yr; forced vital capacity, 60 ± 13% predicted; carbon monoxide diffusing capacity, 52 ± 10% predicted). Levels of endothelin, 6-keto-prostaglandin-F(1α), thromboxane B(2), and nitrates were measured at rest and during submaximal exercise. Pulmonary hemodynamics and gas exchange, including ventilation-perfusion relationships, were assessed breathing ambient air and 40 ppm NO, both at rest and during submaximal exercise. The concentration of thromboxane B(2) increased during exercise (P = 0.046), whereas levels of other mediators did not change. The change in 6-keto-prostaglandin-F(1α) correlated with that of mean pulmonary arterial pressure (r = 0.94; P < 0.005). Inhaled NO reduced mean pulmonary arterial pressure at rest (-4.6 ± 2.1 mmHg) and during exercise (-11.7 ± 7.1 mmHg) (P = 0.001 and P = 0.004, respectively), without altering arterial oxygenation or ventilation-perfusion distributions in any of the study conditions. Alveolar-to-capillary oxygen diffusion limitation, which accounted for the decrease of arterial Po(2) during exercise, was not modified by NO administration. We conclude that, in IPF, some endothelium-derived signaling molecules may modulate the development of pulmonary hypertension during exercise, and that the administration of inhaled NO reduces pulmonary vascular resistance without disturbing gas exchange.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…