• J. Neurol. Neurosurg. Psychiatr. · Apr 1999

    Clinical Trial Controlled Clinical Trial

    EMG responses to free fall in elderly subjects and akinetic rigid patients.

    • A R Bisdorff, A M Bronstein, C Wolsley, M A Gresty, A Davies, and A Young.
    • Hôpital de la Ville, Esch-sur-Alzette, Luxembourg.
    • J. Neurol. Neurosurg. Psychiatr. 1999 Apr 1; 66 (4): 447-55.

    ObjectivesThe EMG startle response to free fall was studied in young and old normal subjects, patients with absent vestibular function, and patients with akinetic-rigid syndromes. The aim was to detect any derangement in this early phase of the "landing response" in patient groups with a tendency to fall. In normal subjects the characteristics of a voluntary muscle contraction (tibialis anterior) was also compared when evoked by a non-startling sound and by the free fall startle.MethodsSubjects lay supine on a couch which was unexpectedly released into free fall. Latencies of multiple surface EMG recordings to the onset of free fall, detected by a head mounted linear accelerometer, were measured.Results And Conclusions(1) EMG responses in younger normal subjects occurred at: sternomastoid 54 ms, abdominals 69 ms, quadriceps 78 ms, deltoid 80 ms, and tibialis anterior 85 ms. This pattern of muscle activation, which is not a simple rostrocaudal progression, may be temporally/spatially organised in the startle brainstem centres. (2) Voluntary tibialis EMG activation was earlier and stronger in response to a startling stimulus (fall) than in response to a non-startling stimulus (sound). This suggests that the startle response can be regarded as a reticular mechanism enhancing motor responsiveness. (3) Elderly subjects showed similar activation sequences but delayed by about 20 ms. This delay is more than can be accounted for by slowing of central and peripheral motor conduction, therefore suggesting age dependent delay in central processing. (4) Avestibular patients had normal latencies indicating that the free fall startle can be elicited by non-vestibular inputs. (5) Latencies in patients with idiopathic Parkinson's disease were normal whereas responses were earlier in patients with multiple system atrophy (MSA) and delayed or absent in patients with Steele-Richardson-Olszewski (SRO) syndrome. The findings in this patient group suggest: (1) lack of dopaminergic influence on the timing of the startle response, (2) concurrent cerebellar involvement in MSA may cause startle disinhibition, and (3) extensive reticular damage in SRO severely interferes with the response to free fall.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…