• PLoS medicine · Dec 2016

    Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study.

    • Jianxin Shi, Xing Hua, Bin Zhu, Sarangan Ravichandran, Mingyi Wang, Cu Nguyen, Seth A Brodie, Alessandro Palleschi, Marco Alloisio, Gianluca Pariscenti, Kristine Jones, Weiyin Zhou, Aaron J Bouk, Joseph Boland, Belynda Hicks, Adam Risch, Hunter Bennett, Brian T Luke, Lei Song, Jubao Duan, Pengyuan Liu, Takashi Kohno, Qingrong Chen, Daoud Meerzaman, Crystal Marconett, Ite Laird-Offringa, Ian Mills, Neil E Caporaso, Mitchell H Gail, Angela C Pesatori, Dario Consonni, Pier Alberto Bertazzi, Stephen J Chanock, and Maria Teresa Landi.
    • Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America.
    • PLoS Med. 2016 Dec 1; 13 (12): e1002162.

    BackgroundLung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer and has a high risk of distant metastasis at every disease stage. We aimed to characterize the genomic landscape of LUAD and identify mutation signatures associated with tumor progression.Methods And FindingsWe performed an integrative genomic analysis, incorporating whole exome sequencing (WES), determination of DNA copy number and DNA methylation, and transcriptome sequencing for 101 LUAD samples from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We detected driver genes by testing whether the nonsynonymous mutation rate was significantly higher than the background mutation rate and replicated our findings in public datasets with 724 samples. We performed subclonality analysis for mutations based on mutant allele data and copy number alteration data. We also tested the association between mutation signatures and clinical outcomes, including distant metastasis, survival, and tumor grade. We identified and replicated two novel candidate driver genes, POU class 4 homeobox 2 (POU4F2) (mutated in 9 [8.9%] samples) and ZKSCAN1 (mutated in 6 [5.9%] samples), and characterized their major deleterious mutations. ZKSCAN1 was part of a mutually exclusive gene set that included the RTK/RAS/RAF pathway genes BRAF, EGFR, KRAS, MET, and NF1, indicating an important driver role for this gene. Moreover, we observed strong associations between methylation in specific genomic regions and somatic mutation patterns. In the tumor evolution analysis, four driver genes had a significantly lower fraction of subclonal mutations (FSM), including TP53 (p = 0.007), KEAP1 (p = 0.012), STK11 (p = 0.0076), and EGFR (p = 0.0078), suggesting a tumor initiation role for these genes. Subclonal mutations were significantly enriched in APOBEC-related signatures (p < 2.5×10-50). The total number of somatic mutations (p = 0.0039) and the fraction of transitions (p = 5.5×10-4) were associated with increased risk of distant metastasis. Our study's limitations include a small number of LUAD patients for subgroup analyses and a single-sample design for investigation of subclonality.ConclusionsThese data provide a genomic characterization of LUAD pathogenesis and progression. The distinct clonal and subclonal mutation signatures suggest possible diverse carcinogenesis pathways for endogenous and exogenous exposures, and may serve as a foundation for more effective treatments for this lethal disease. LUAD's high heterogeneity emphasizes the need to further study this tumor type and to associate genomic findings with clinical outcomes.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…