• Journal of neurotrauma · Aug 2020

    FTY720 attenuates neuropathic pain after spinal cord injury by decreasing systemic and local inflammation in a rat spinal cord compression model.

    • Kazuyoshi Yamazaki, Masahito Kawabori, Toshitaka Seki, Soichiro Takamiya, Takahiro Tateno, Kotaro Konno, Masahiko Watanabe, and Kiyohiro Houkin.
    • Department of Neurosurgery, Graduate School of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
    • J. Neurotrauma. 2020 Aug 1; 37 (15): 1720-1728.

    AbstractNeuropathic pain severely impairs rehabilitation and quality of life after spinal cord injury (SCI). The sphingosine-1-phosphate receptor agonist, FTY720, plays an important protective role in neuronal injury. This study aims to examine the effects of FTY720 in a rat acute SCI model, focusing on neuropathic pain. Female rats with SCI induced by 1-min clip compression were administered vehicle or 1.5 mg/kg of FTY720 24 h after the injury. Using the mechanical nociceptive threshold test, we monitored neuropathic pain and performed histological analysis of the pain pathway, including the μ opioid receptor (MOR), hydroxytryptamine transporter (HTT), and calcitonin gene-related peptide (CGRP). Motor score, SCI lesion volume, residual motor axons, inflammatory response, glial scar, and microvascular endothelial dysfunction were also compared between the two groups. FTY720 treatment resulted in significant attenuation of post-traumatic neuropathic pain. It also decreased systemic and local inflammation, thereby reducing the damaged areas and astrogliosis and resulting in motor functional recovery. Whereas there was no difference in the CGRP expression between the two groups, FTY720 significantly preserved the MOR in both the caudal and rostral areas of the spinal dorsal horn. Whereas HTT was preserved in the FTY720 group, it was significantly increased in the rostral side and decreased in the caudal side of the injury in the vehicle group. These results suggest that FTY720 ameliorates post-traumatic allodynia through regulation of neuroinflammation, maintenance of the blood-brain barrier, and inhibition of glial scar formation, thereby preserving the connectivity of the descending inhibitory pathway and reducing neuropathic pain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…