• J. Vasc. Surg. · Jan 2018

    Comparative Study

    External validation of Vascular Study Group of New England risk predictive model of mortality after elective abdominal aorta aneurysm repair in the Vascular Quality Initiative and comparison against established models.

    • Mohammad H Eslami, Denis V Rybin, Gheorghe Doros, Jeffrey J Siracuse, and Alik Farber.
    • Division of Vascular Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pa. Electronic address: eslamimh@upmc.edu.
    • J. Vasc. Surg. 2018 Jan 1; 67 (1): 143-150.

    ObjectiveThe purpose of this study is to externally validate a recently reported Vascular Study Group of New England (VSGNE) risk predictive model of postoperative mortality after elective abdominal aortic aneurysm (AAA) repair and to compare its predictive ability across different patients' risk categories and against the established risk predictive models using the Vascular Quality Initiative (VQI) AAA sample.MethodsThe VQI AAA database (2010-2015) was queried for patients who underwent elective AAA repair. The VSGNE cases were excluded from the VQI sample. The external validation of a recently published VSGNE AAA risk predictive model, which includes only preoperative variables (age, gender, history of coronary artery disease, chronic obstructive pulmonary disease, cerebrovascular disease, creatinine levels, and aneurysm size) and planned type of repair, was performed using the VQI elective AAA repair sample. The predictive value of the model was assessed via the C-statistic. Hosmer-Lemeshow method was used to assess calibration and goodness of fit. This model was then compared with the Medicare, Vascular Governance Northwest model, and Glasgow Aneurysm Score for predicting mortality in VQI sample. The Vuong test was performed to compare the model fit between the models. Model discrimination was assessed in different risk group VQI quintiles.ResultsData from 4431 cases from the VSGNE sample with the overall mortality rate of 1.4% was used to develop the model. The internally validated VSGNE model showed a very high discriminating ability in predicting mortality (C = 0.822) and good model fit (Hosmer-Lemeshow P = .309) among the VSGNE elective AAA repair sample. External validation on 16,989 VQI cases with an overall 0.9% mortality rate showed very robust predictive ability of mortality (C = 0.802). Vuong tests yielded a significant fit difference favoring the VSGNE over then Medicare model (C = 0.780), Vascular Governance Northwest (0.774), and Glasgow Aneurysm Score (0.639). Across the 5 risk quintiles, the VSGNE model predicted observed mortality significantly with great accuracy.ConclusionsThis simple VSGNE AAA risk predictive model showed very high discriminative ability in predicting mortality after elective AAA repair among a large external independent sample of AAA cases performed by a diverse array of physicians nationwide. The risk score based on this simple VSGNE model can reliably stratify patients according to their risk of mortality after elective AAA repair better than other established models.Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…