• Resuscitation · May 2020

    Randomized Controlled Trial

    Modified volumetric capnography-derived parameter: A potentially stable indicator in monitoring cardiopulmonary resuscitation efficacy in a porcine model.

    • Jun Xu, Xuezhong Yu, Lili Zhang, Yangyang Fu, Kui Jin, Lu Yin, Shanshan Yu, and Danyu Liu.
    • Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China. Electronic address: xujunfree@126.com.
    • Resuscitation. 2020 May 1; 150: 94-101.

    AimWe aimed to investigate whether the ability of the volumetric capnography-derived parameter, the volume of CO2 eliminated per minute and per kg body weight (V'CO2 kg-1), in monitoring the quality of CPR and predicting the return of spontaneous circulation (ROSC) remains undisturbed by hyperventilation.MethodsThis randomised crossover study included 12 male domestic pigs. After 4 min of untreated ventricular fibrillation, mechanical CPR was administered. Following 5-min washout periods, each animal underwent two sessions of experiments; four 5-min ventilation trials followed by advanced life support, consecutively in the two sessions.ResultsDifferent ventilation types had no significant impact on V'CO2 kg-1 or haemodynamics. However, PETCO2 was significantly affected by the ventilation type and coronary perfusion pressure (P < 0.05). The means ± standard deviations of PETCO2 decreased linearly with an increase in the respiratory rate (RR) (P < 0.05). The PETCO2 decreased from 20.42 ± 9.51 to 16.16 ± 5.07 (P < 0.05) as the tidal volume increased from 10 to 20 mL min-1. No significant differences in V'CO2 kg-1 were observed between the three RR levels of ventilation types (P = 0.274). Post hoc analysis demonstrated a significant difference between the highest value of V'CO2 kg-1 in double tidal volume hyperventilation and normal ventilation and triple respiratory rate hyperventilation (P < 0.05). The AUC for V'CO2 kg-1 and PETCO2 in discriminating between survivors and non-survivors was 0.80 and 0.71, respectively.ConclusionsV'CO2 kg-1 performs better than PETCO2 in monitoring the quality of CPR during hyperventilation. In predicting ROSC during variations in a ventilation state, V'CO2 kg-1 has good predictive ability.Copyright © 2020 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.