• Behav. Brain Res. · Feb 2016

    Ventral tegmental area dopaminergic lesion-induced depressive phenotype in the rat is reversed by deep brain stimulation of the medial forebrain bundle.

    • L L Furlanetti, V A Coenen, and M D Döbrössy.
    • Laboratory of Stereotaxy and Interventional Neurosciences, Dept. of Stereotactic and Functional Neurosurgery, University Freiburg-Medical Center, Germany.
    • Behav. Brain Res. 2016 Feb 15; 299: 132-40.

    AbstractDBS of the medial forebrain bundle (MFB) has been investigated clinically in major depressive disorder patients with rapid and long-term reduction of symptoms. In the context of chronic bilateral high frequency deep brain stimulation (DBS) of the MFB, the current study looked at the impact of lesioning the ascending dopaminergic pathway at the level of the ventral tegmental area (VTA). Sprague-Dawley female rats were given bilateral injection of 6-OHDA into the VTA (VTA-lx group) or were left unlesioned (control group). Later, all animals received bilateral microelectrode implantation into the MFB followed by chronic continuous stimulation for 3 weeks. Behavioral tests were performed as baseline and following MFB-DBS, along with histological analysis. Pre-stimulation baseline testing of the VTA-lx animals indicated depressive-like phenotype in comparison with controls. Response to MFB-DBS varied according to (i) the degree of dopaminergic depletion: animals with severe mesocorticolimbic dopamine depletion did not, whilst those with mild dopamine loss responded well to stimulation; (ii) environmental conditions and the nature of the behavioral tests, e.g., stressful vs non-stressful situations. Neuromodulation-induced c-fos expression in the prelimbic frontal cortex and nucleus accumbens was also dependent upon integrity of the dopaminergic ascending projections. Our results confirm a potential role for dopamine in symptom relief observed in clinical MFB-DBS. Although mechanisms are not fully understood, the data suggests that the rescue of depressive phenotype in rodents can work via both dopamine-dependent and independent mechanisms. Further investigations concerning the network of depression using neuromodulation platforms in animal models might give insight into genesis and treatment of major depression disorder. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.