• Int. J. Radiat. Oncol. Biol. Phys. · Aug 2011

    Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis.

    • Michael P Mac Manus, Zhe Ding, Annette Hogg, Alan Herschtal, David Binns, David L Ball, and Rodney J Hicks.
    • Department of Radiation Oncology, Peter MacCallum Cancer Institute, Melbourne, Australia. michael.macmanus@petermac.org
    • Int. J. Radiat. Oncol. Biol. Phys. 2011 Aug 1; 80 (5): 1365-71.

    PurposeTo study the relationship between fluorodeoxyglucose (FDG) uptake in pulmonary tissue after radical radiation therapy (RT) and the presence and severity of radiation pneumonitis.Methods And MaterialsIn 88 consecutive patients, (18)F-FDG-positron emission tomography was performed at a median of 70 days after completion of RT. Patients received 60 Gy in 30 fractions, and all but 15 had concurrent platinum-based chemotherapy. RT-induced pulmonary inflammatory changes occurring within the radiation treatment volume were scored, using a visual (0 to 3) radiotoxicity grading scale, by an observer blinded to the presence or absence of clinical radiation pneumonitis. Radiation pneumonitis was retrospectively graded using the Radiation Therapy Oncology Group (RTOG) scale by an observer blinded to the PET radiotoxicity score.ResultsThere was a significant association between the worst RTOG pneumonitis grade occurring at any time after RT and the positron emission tomograph (PET) radiotoxicity grade (one-sided p = 0.033). The worst RTOG pneumonitis grade occurring after the PET scan was also associated with the PET radiotoxicity grade (one-sided p = 0.035). For every one-level increase in the PET toxicity scale, the risk of a higher RTOG radiation pneumonitis score increased by approximately 40%. The PET radiotoxicity score showed no significant correlation with the duration of radiation pneumonitis.ConclusionsThe intensity of FDG uptake in pulmonary tissue after RT determined using a simple visual scoring system showed significant correlation with the presence and severity of radiation pneumonitis. (18)F-FDG-PET may be useful in the prediction, diagnosis and therapeutic monitoring of radiation pneumonitis.Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.