-
- Feras Akbik, Matthew Robertson, Alvin S Das, Tarun Singhal, Jong Woo Lee, and Henrikas Vaitkevicius.
- Department of Neurology and Neurosurgery, Division of Neurocritical Care, Emory School of Medicine, Emory University Hospital, 1364 Clifton Road NE, Atlanta, GA, 30322, USA.
- Neurocrit Care. 2020 Dec 1; 33 (3): 657-669.
BackgroundDetermining the cause of refractory seizures and/or interictal continuum (IIC) findings in the critically ill patient remains a challenge. These electrographic abnormalities may represent primary ictal pathology or may instead be driven by an underlying infectious, inflammatory, or neoplastic pathology that requires targeted therapy. In these cases, it is unclear whether escalating antiepileptic therapy will be helpful or harmful. Herein, we report the use of serial [F-18] fluorodeoxyglucose positron emission tomography (FDG-PET) coupled with induced electrographic burst suppression to distinguish between primary and secondary ictal pathologies. We propose that anesthetic suppression of hypermetabolic foci suggests clinical responsiveness to escalating antiepileptic therapy, whereas non-suppressible hypermetabolic foci are suggestive of non-ictal pathologies that likely require multimodal therapy.MethodsWe describe 6 patients who presented with electrographic findings of seizure or IIC abnormalities, severe neurologic injury, and clinical concern for confounding pathologies. All patients were continuously monitored on video electroencephalography (cvEEG). Five patients underwent at least two sequential FDG-PET scans of the brain: one in a baseline state and the second while under electrographic burst suppression. FDG-avid loci and EEG tracings were compared pre- and post-burst suppression. One patient underwent a single FDG-PET scan while burst-suppressed.ResultsFour patients had initially FDG-avid foci that subsequently resolved with burst suppression. Escalation of antiepileptic therapy in these patients resulted in clinical improvement, suggesting that the foci were related to primary ictal pathology. These included clinical diagnoses of electroclinical status epilepticus, new-onset refractory status epilepticus, stroke-like migraine attacks after radiotherapy, and epilepsy secondary to inflammatory cerebral amyloid angiopathy. Conversely, two patients with high-grade EEG abnormalities had FDG-avid foci that persisted despite burst suppression. The first presented with a poor examination, fever, and concern for encephalitis. Postmortem pathology confirmed suspicion of herpes simplex virus encephalitis. The second patient presented with concern for checkpoint inhibitor-induced autoimmune encephalitis. The persistence of the FDG-avid focus, despite electrographic burst suppression, guided successful treatment through escalation of immunosuppressive therapy.ConclusionsIn appropriately selected patients, FDG-PET scans while in burst suppression may help dissect the underlying pathophysiologic cause of IIC findings observed on EEG and guide tailored therapy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.