-
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi · Oct 2006
[A multi-lead ECG classification network system based on modified LADT].
- Jun Feng, Yazhu Qiu, and Zhiwen Mo.
- College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, China. fnjun@163.com
- Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006 Oct 1; 23 (5): 956-9.
AbstractAn electrocardiogram (ECG) classify system based on the features of the ECG and neural network classification, which is the simulation of the real world situation, was present. First, a modified approach of the linear approximation distance thresholding (LADT) algorithm was studied and the features of the ECG were obtained. Then a neural network which can classify the multi-lead ECG data was trained with these features along the theory of the ECG diagnosis and the situation of ECG diagnosis in practice. Thus take a new idea for the ECG automatic analysis. The algorithm was tested using several ECG signals of MIT-BIH, and the performance was good. The correct rate of the trained wave is 100%, untrained is 78.2%.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.