• Stem cells · Sep 2009

    Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy.

    • Lata G Menon, Kathleen Kelly, Hong Wei Yang, Seung-Ki Kim, Peter M Black, and Rona S Carroll.
    • Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
    • Stem Cells. 2009 Sep 1; 27 (9): 2320-30.

    AbstractGlioblastoma is among the most aggressive and treatment resistant of all human cancers. Conventional therapeutic approaches are unsuccessful because of diffuse infiltrative invasion of glioma tumor cells into normal brain parenchyma. Stem cell-based therapies provide a promising approach for the treatment of malignant gliomas because of their migratory ability to invasive tumor cells. Our therapeutic strategy was to use human bone marrow-derived mesenchymal stromal cells (hMSCs) as a cellular vehicle for the targeted delivery and local production of the biologic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) at the glioma tumor site. hMSCs were transduced with a lentivirus expressing secretable TRAIL (S-TRAIL) and mCherry (red fluorescent protein). Our results clearly demonstrate the retention of tumor tropic ability of hMSC S-TRAIL cells by in vitro and in vivo migration assays. In vitro assays confirmed the expression, release, and biological activity of S-TRAIL produced by hMSC S-TRAIL cells. For the in vivo assessment of therapeutic efficacy, hMSCs were injected ipsilateral to an established intracranial glioma tumor in a mouse xenograft model. Genetically engineered hMSC S-TRAIL cells were effective in inhibiting intracranial U87 glioma tumor growth (81.6%) in vivo and resulted in significantly longer animal survival. Immunohistochemical studies demonstrated significant, eight fold greater tumor cell apoptosis in the hMSC S-TRAIL-treated group than in controls. Our study demonstrates the therapeutic efficacy of hMSC S-TRAIL cells and confirms that hMSCs can serve as a powerful cell-based delivery vehicle for the site-specific release of therapeutic proteins.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.