• Anesthesia and analgesia · May 2020

    Observational Study

    Early Detection of Heart Failure With Reduced Ejection Fraction Using Perioperative Data Among Noncardiac Surgical Patients: A Machine-Learning Approach.

    • Michael R Mathis, Milo C Engoren, Hyeon Joo, Michael D Maile, Keith D Aaronson, Michael L Burns, Michael W Sjoding, Nicholas J Douville, Allison M Janda, Yaokun Hu, Kayvan Najarian, and Sachin Kheterpal.
    • From the Department of Anesthesiology.
    • Anesth. Analg. 2020 May 1; 130 (5): 1188-1200.

    BackgroundHeart failure with reduced ejection fraction (HFrEF) is a condition imposing significant health care burden. Given its syndromic nature and often insidious onset, the diagnosis may not be made until clinical manifestations prompt further evaluation. Detecting HFrEF in precursor stages could allow for early initiation of treatments to modify disease progression. Granular data collected during the perioperative period may represent an underutilized method for improving the diagnosis of HFrEF. We hypothesized that patients ultimately diagnosed with HFrEF following surgery can be identified via machine-learning approaches using pre- and intraoperative data.MethodsPerioperative data were reviewed from adult patients undergoing general anesthesia for major surgical procedures at an academic quaternary care center between 2010 and 2016. Patients with known HFrEF, heart failure with preserved ejection fraction, preoperative critical illness, or undergoing cardiac, cardiology, or electrophysiologic procedures were excluded. Patients were classified as healthy controls or undiagnosed HFrEF. Undiagnosed HFrEF was defined as lacking a HFrEF diagnosis preoperatively but establishing a diagnosis within 730 days postoperatively. Undiagnosed HFrEF patients were adjudicated by expert clinician review, excluding cases for which HFrEF was secondary to a perioperative triggering event, or any event not associated with HFrEF natural disease progression. Machine-learning models, including L1 regularized logistic regression, random forest, and extreme gradient boosting were developed to detect undiagnosed HFrEF, using perioperative data including 628 preoperative and 1195 intraoperative features. Training/validation and test datasets were used with parameter tuning. Test set model performance was evaluated using area under the receiver operating characteristic curve (AUROC), positive predictive value, and other standard metrics.ResultsAmong 67,697 cases analyzed, 279 (0.41%) patients had undiagnosed HFrEF. The AUROC for the logistic regression model was 0.869 (95% confidence interval, 0.829-0.911), 0.872 (0.836-0.909) for the random forest model, and 0.873 (0.833-0.913) for the extreme gradient boosting model. The corresponding positive predictive values were 1.69% (1.06%-2.32%), 1.42% (0.85%-1.98%), and 1.78% (1.15%-2.40%), respectively.ConclusionsMachine-learning models leveraging perioperative data can detect undiagnosed HFrEF with good performance. However, the low prevalence of the disease results in a low positive predictive value, and for clinically meaningful sensitivity thresholds to be actionable, confirmatory testing with high specificity (eg, echocardiography or cardiac biomarkers) would be required following model detection. Future studies are necessary to externally validate algorithm performance at additional centers and explore the feasibility of embedding algorithms into the perioperative electronic health record for clinician use in real time.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.