-
- Robert Korez, Michael Putzier, and Tomaž Vrtovec.
- Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
- Eur Spine J. 2020 Sep 1; 29 (9): 2295-2305.
PurposeThe purpose of this study is to evaluate the performance of a novel deep learning (DL) tool for fully automated measurements of the sagittal spinopelvic balance from X-ray images of the spine in comparison with manual measurements.MethodsNinety-seven conventional upright sagittal X-ray images from 55 subjects were retrospectively included in this study. Measurements of the parameters of the sagittal spinopelvic balance, i.e., the sacral slope (SS), pelvic tilt (PT), spinal tilt (ST), pelvic incidence (PI) and spinosacral angle (SSA), were obtained manually by identifying specific anatomical landmarks using the SurgiMap Spine software and by the fully automated DL tool. Statistical analysis was performed in terms of the mean absolute difference (MAD), standard deviation (SD) and Pearson correlation, while the paired t test was used to search for statistically significant differences between manual and automated measurements.ResultsThe differences between reference manual measurements and those obtained automatically by the DL tool were, respectively, for SS, PT, ST, PI and SSA, equal to 5.0° (3.4°), 2.7° (2.5°), 1.2° (1.2°), 5.5° (4.2°) and 5.0° (3.5°) in terms of MAD (SD), with a statistically significant corresponding Pearson correlation of 0.73, 0.90, 0.95, 0.81 and 0.71. No statistically significant differences were observed between the two types of measurement (p value always above 0.05).ConclusionThe differences between measurements are in the range of the observer variability of manual measurements, indicating that the DL tool can provide clinically equivalent measurements in terms of accuracy but superior measurements in terms of cost-effectiveness, reliability and reproducibility.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.