-
- Ian A F Stokes and James C Iatridis.
- Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, Vermont 05405, USA.
- Spine. 2004 Dec 1; 29 (23): 2724-32.
Study DesignA review of the literature on macromechanical factors that accelerate disc degeneration with particular focus on distinguishing the roles of immobilization and overloading.ObjectiveThis review examines evidence from the literature in the areas of biomechanics, epidemiology, animal models, and intervertebral disc physiology. The purpose is to examine: 1) what are the degeneration-related alterations in structural, material, and failure properties in the disc; and 2) evidence in the literature for causal relationships between mechanical loading and alterations in those structural and material properties that constitute disc degeneration.Summary Of Background DataIt is widely assumed that the mechanical environment of the intervertebral disc at least in part determines its rate of degeneration. However, there are two plausible and contrasting theories as to the mechanical conditions that promote degeneration: 1) mechanical overload; and 2) reduced motion and loading.ResultsThere are a greater number of studies addressing the "wear and tear" theory than the immobilization theory. Evidence is accumulating to support the notion that there is a "safe window" of tissue mechanical conditions in which the discs remain healthy.ConclusionsIt is concluded that probably any abnormal loading conditions (including overload and immobilization) can produce tissue trauma and/or adaptive changes that may result in disc degeneration. Adverse mechanical conditions can be due to external forces, or may result from impaired neuromuscular control of the paraspinal and abdominal muscles. Future studies will need to evaluate additional unquantified interactions between biomechanics and factors such as genetics and behavioral responses to pain and disability.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.