• J Occup Environ Hyg · Apr 2004

    Fitting characteristics of eighteen N95 filtering-facepiece respirators.

    • Christopher C Coffey, Robert B Lawrence, Donald L Campbell, Ziqing Zhuang, Catherine A Calvert, and Paul A Jensen.
    • National Institute for Occupational Safety and Health, Division of Respiratory Disease Studies, Morgantown, West Virginia 26505-2888, USA. ccoffey@cdc.gov
    • J Occup Environ Hyg. 2004 Apr 1; 1 (4): 262-71.

    AbstractFour performance measures were used to evaluate the fitting characteristics of 18 models of N95 filtering-facepiece respirators: (1) the 5th percentile simulated workplace protection factor (SWPF) value, (2) the shift average SWPF value, (3) the h-value, and (4) the assignment error. The effect of fit-testing on the level of protection provided by the respirators was also evaluated. The respirators were tested on a panel of 25 subjects with various face sizes. Simulated workplace protection factor values, determined from six total penetration (face-seal leakage plus filter penetration) tests with re-donning between each test, were used to indicate respirator performance. Five fit-tests were used: Bitrex, saccharin, generated aerosol corrected for filter penetration, PortaCount Plus corrected for filter penetration, and the PortaCount Plus with the N95-Companion accessory. Without fit-testing, the 5th percentile SWPF for all models combined was 2.9 with individual model values ranging from 1.3 to 48.0. Passing a fit-test generally resulted in an increase in protection. In addition, the h-value of each respirator was computed. The h-value has been determined to be the population fraction of individuals who will obtain an adequate level of protection (i.e., SWPF >/=10, which is the expected level of protection for half-facepiece respirators) when a respirator is selected and donned (including a user seal check) in accordance with the manufacturer's instructions without fit-testing. The h-value for all models combined was 0.74 (i.e., 74% of all donnings resulted in an adequate level of protection), with individual model h-values ranging from 0.31 to 0.99. Only three models had h-values above 0.95. Higher SWPF values were achieved by excluding SWPF values determined for test subject/respirator combinations that failed a fit-test. The improvement was greatest for respirator models with lower h-values. Using the concepts of shift average and assignment error to measure respirator performance yielded similar results. The highest level of protection was provided by passing a fit-test with a respirator having good fitting characteristics.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.