-
Pediatr Crit Care Me · Aug 2020
Prediction of Pediatric Critical Care Resource Utilization for Disaster Triage.
- Elizabeth Y Killien, Brianna Mills, Nicole A Errett, Vicki Sakata, Monica S Vavilala, Frederick P Rivara, Niranjan Kissoon, and Mary A King.
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA.
- Pediatr Crit Care Me. 2020 Aug 1; 21 (8): e491e501e491-e501.
ObjectivesPediatric protocols to guide allocation of limited resources during a disaster lack data to validate their use. The 2011 Pediatric Emergency Mass Critical Care Task Force recommended that expected duration of critical care be incorporated into resource allocation algorithms. We aimed to determine whether currently available pediatric illness severity scores can predict duration of critical care resource use.DesignRetrospective cohort study.SettingSeattle Children's Hospital.PatientsPICU patients admitted 2016-2018 for greater than or equal to 12 hours (n = 3,206).InterventionsNone.Measurements And Main ResultsWe developed logistic and linear regression models in two-thirds of the cohort to predict need for and duration of PICU resources based on Pediatric Risk of Mortality-III, Pediatric Index of Mortality-3, and serial Pediatric Logistic Organ Dysfunction-2 scores. We tested the predictive accuracy of the models with the highest area under the receiver operating characteristic curve (need for each resource) and R (duration of use) in a validation cohort of the remaining one of three of the sample and among patients admitted during one-third of the sample and among patients admitted during surges of respiratory illness. Pediatric Logistic Organ Dysfunction score calculated 12 hours postadmission had higher predictive accuracy than either Pediatric Risk of Mortality or Pediatric Index of Mortality scores. Models incorporating 12-hour Pediatric Logistic Organ Dysfunction score, age, Pediatric Overall Performance Category, Pediatric Cerebral Performance Category, chronic mechanical ventilation, and postoperative status had an area under the receiver operating characteristic curve = 0.8831 for need for any PICU resource (positive predictive value 80.2%, negative predictive value 85.9%) and area under the receiver operating characteristic curve = 0.9157 for mechanical ventilation (positive predictive value 85.7%, negative predictive value 89.2%) within 7 days of admission. Models accurately predicted greater than or equal to 24 hours of any resource use for 78.9% of patients and greater than or equal to 24 hours of ventilation for 83.1%. Model fit and accuracy improved for prediction of resource use within 3 days of admission, and was lower for noninvasive positive pressure ventilation, vasoactive infusions, continuous renal replacement therapy, extracorporeal membrane oxygenation, and length of stay.ConclusionsA model incorporating 12-hour Pediatric Logistic Organ Dysfunction score performed well in estimating how long patients may require PICU resources, especially mechanical ventilation. A pediatric disaster triage algorithm that includes both likelihood for survival and for requiring critical care resources could minimize subjectivity in resource allocation decision-making.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.