• Eur J Pain · Aug 2020

    Activation of the descending pain modulatory system using cuff pressure algometry: Back translation from man to rat.

    • Tatum M Cummins, Mateusz M Kucharczyk, Thomas Graven-Nielsen, and Kirsty Bannister.
    • Central Modulation of Pain, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
    • Eur J Pain. 2020 Aug 1; 24 (7): 1330-1338.

    BackgroundDiffuse noxious inhibitory controls (DNIC) as measured in rat and conditioned pain modulation (CPM), the supposed psychophysical paradigm of DNIC measured in humans, are unique manifestations of an endogenous descending modulatory pathway that is activated by the application of a noxious conditioning stimulus. The predictive value of the human CPM processing is crucial when deliberating the translational worth of the two phenomena.MethodsFor CPM or DNIC measurement, test and conditioning stimuli were delivered using a computer-controlled cuff algometry system or manual inflation of neonate blood pressure cuffs, respectively. In humans (n = 20), cuff pain intensity (for pain detection and pain tolerance thresholds) was measured using an electronic visual analogue scale. In isoflurane-anaesthetized naïve rats, nociception was measured by recording deep dorsal horn wide dynamic range (WDR) neuronal firing rates (n = 7) using in vivo electrophysiology.ResultsA painful cuff-pressure conditioning stimulus on the leg increased pain detection and pain tolerance thresholds recorded by cuff stimulation on the contralateral leg in humans by 32% ± 3% and 24% ± 2% (mean ± SEM) of baseline responses, respectively (p < .001). This finding was back-translated by revealing that a comparable cuff-pressure conditioning stimulus (40 kPa) on the hind paw inhibited the responses of WDR neurons to noxious contralateral cuff test stimulation to 42% ± 9% of the baseline neuronal response (p = .003).ConclusionsThese data substantiate that the noxious cuff pressure paradigm activates the descending pain modulatory system in rodent (DNIC) and man (CPM), respectively. Future back and forward translational studies using cuff pressure algometry may reveal novel mechanisms in varied chronic pain states.SignificanceThis study provides novel evidence that a comparable noxious cuff pressure paradigm activates a unique form of endogenous inhibitory control in healthy rat and man. This has important implications for the forward translation of bench and experimental pain research findings to the clinical domain. If translatable mechanisms underlying dysfunctional endogenous inhibitory descending pathway expression (previously evidenced in painful states in rat and man) were revealed using cuff pressure algometry, the identification of new analgesic targets could be expedited.© 2020 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation EFIC ®.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.