-
- Bin Wang, Shouming Chen, Jun Yang, Linghui Yang, Jin Liu, and Wensheng Zhang.
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
- Plos One. 2017 Jan 1; 12 (8): e0183439.
ObjectiveET-26 HCl is a promising sedative-hypnotic anesthetic with virtually no effect on adrenocortical steroid synthesis. However, whether or not ET-26 HCl also has a sufficiently wide safety margin and hemodynamic stability similar to that of etomidate and related compounds remains unknown. In this study, the effects of ET-26 HCl, etomidate and propofol on therapeutic index, heart rate (HR), mean arterial pressure (MAP), maximal rate for left ventricular pressure rise (Dmax/t), and maximal rate for left ventricular pressure decline (Dmin/t) were investigated in healthy rats and a rat model of uncontrolled hemorrhagic shock (UHS).Methods50% effective dose (ED50) and 50% lethal dose (LD50) were determined after single bolus doses of propofol, etomidate, or ET-26 HCl using the Bliss method and the up and down method, respectively. All rats were divided into either the normal group and received either etomidate, ET-26 HCl or propofol, (n = 6 per group) or the UHS group and received either etomidate, ET-26 HCl or propofol, (n = 6 per group). In the normal group, after preparation for hemodynamic and heart-function monitoring, rats were administered a dose of one of the test agents twofold-higher than the established ED50, followed by hemodynamic and heart-function monitoring. Rats in the UHS group underwent experimentally induced UHS with a target arterial pressure of 40 mmHg for 1 hour, followed by administration of an ED50 dose of one of the experimental agents. Blood-gas analysis was conducted on samples obtained during equilibration with the experimental setup and at the end of the experiment.ResultsIn the normal group, no significant differences in HR, MAP, Dmax/t and Dmin/t (all P > 0.05) were observed at any time point between the etomidate and ET-26 HCl groups, whereas HR, MAP and Dmax/t decreased briefly and Dmin/t increased following propofol administration. In the UHS group, no significant differences in HR, MAP, Dmax/t and Dmin/t were observed before and after administration of etomidate or ET-26 HCl at ED50 doses (all P > 0.05). Administration of propofol resulted in brief, statistically significant reductions in HR and Dmax/t, with a brief increase in Dmin/t (P ˂ 0.05), while no significant differences in MAP were observed among the three groups. The blood-lactate concentrations of rats in the ET-26 HCl group were significantly lower than those in etomidate and propofol groups (P ˂ 0.05).ConclusionsET-26 HCl provides a similar level of hemodynamic stability to that obtained with etomidate in both healthy rats, and rat models of UHS. ET-26 HCl has the potential to be a novel induction anesthetic for use in critically ill patients.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.