-
- Irwin Gratz, Martin Baruch, Magdy Takla, Julia Seaman, Isabel Allen, Brian McEniry, and Edward Deal.
- Cooper University Hospital, 1 Cooper Plaza, Camden, NJ, 08103, USA. gratz-irwin@cooperhealth.edu.
- BMC Anesthesiol. 2020 May 1; 20 (1): 98.
BackgroundNeural networks are increasingly used to assess physiological processes or pathologies, as well as to predict the increased likelihood of an impending medical crisis, such as hypotension.MethodWe compared the capabilities of a single hidden layer neural network of 12 nodes to those of a discrete-feature discrimination approach with the goal being to predict the likelihood of a given patient developing significant hypotension under spinal anesthesia when undergoing a Cesarean section (C/S). Physiological input information was derived from a non-invasive blood pressure device (Caretaker [CT]) that utilizes a finger cuff to measure blood pressure and other hemodynamic parameters via pulse contour analysis. Receiver-operator-curve/area-under-curve analyses were used to compare performance.ResultsThe results presented here suggest that a neural network approach (Area Under Curve [AUC] = 0.89 [p < 0.001]), at least at the implementation level of a clinically relevant prediction algorithm, may be superior to a discrete feature quantification approach (AUC = 0.87 [p < 0.001]), providing implicit access to a plurality of features and combinations thereof. In addition, the expansion of the approach to include the submission of other physiological data signals, such as heart rate variability, to the network can be readily envisioned.ConclusionThis pilot study has demonstrated that increased coherence in Arterial Stiffness (AS) variability obtained from the pulse wave analysis of a continuous non-invasive blood pressure device appears to be an effective predictor of hypotension after spinal anesthesia in the obstetrics population undergoing C/S. This allowed us to predict specific dosing thresholds of phenylephrine required to maintain systolic blood pressure above 90 mmHg.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.