• J Neuroimaging · Jul 2020

    Predicting MGMT Promoter Methylation of Glioblastoma from Dynamic Susceptibility Contrast Perfusion: A Radiomic Approach.

    • Girolamo Crisi and Silvano Filice.
    • Neuroradiology Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy.
    • J Neuroimaging. 2020 Jul 1; 30 (4): 458-462.

    Background And PurposeThis study aims to investigate whether radiomic quantitative image features (IFs) from perfusion dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) retain sufficient strength to predict O6-methylguanine-DNA methyltransferase promoter methylation (MGMT_pm) in newly diagnosed glioblastoma (GB) patients.MethodsWe retrospectively reviewed the perfusion DSC-MRI of 59 patients with GB. Patients were classified into three groups: (1) unmethylated if MGMT_pm ≤ 9% (UM); (2) intermediate-methylated if MGMT_pm ranged between 10% and 29% (IM); (3) methylated if MGMT_pm ≥ 30% (M). A total of 92 quantitative IFs were obtained from relative cerebral blood volume and relative cerebral blood flow maps. The Mann-Whitney U-test was applied to assess whether there were statistical differences in IFs between patient groups. Those IFs showing significant difference between two patient groups were termed relevant IFs (rIFs). rIFs were uploaded to a machine learning model to predict the MGMT_pm.ResultsNo rIFs were found between UM and IM groups. Fourteen rIFs were found among UM-M, IM-M, and (UM + IM)-M groups. We built a multilayer perceptron deep learning model that classified patients as belonging to UM + IM and M group. The model performed well with 75% sensitivity, 85% specificity, and an area under the receiver-operating curve of .84.ConclusionrIFs from perfusion DSC-MRI are potential biomarkers in GBs with a ≥30% MGMT_pm. Otherwise, unmethylated and intermediate-methylated GBs lack of rIFs. Five of 14 rIFs show sufficient strength to build an accurate prediction model of MGMT_pm.© 2020 American Society of Neuroimaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.