• J Neuroimaging · May 2020

    Simultaneous Motion and Distortion Correction Using Dual-Echo Diffusion-Weighted MRI.

    • Onur Afacan, W Scott Hoge, Tess E Wallace, Ali Gholipour, Sila Kurugol, and Simon K Warfield.
    • Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA.
    • J Neuroimaging. 2020 May 1; 30 (3): 276-285.

    Background And PurposeGeometric distortions resulting from large pose changes reduce the accuracy of motion measurements and interfere with the ability to generate artifact-free information. Our goal is to develop an algorithm and pulse sequence to enable motion-compensated, geometric distortion compensated diffusion-weighted MRI, and to evaluate its efficacy in correcting for the field inhomogeneity and position changes, induced by large and frequent head motions.MethodsDual echo planar imaging (EPI) with a blip-reversed phase encoding distortion correction technique was evaluated in five volunteers in two separate experiments and compared with static field map distortion correction. In the first experiment, dual-echo EPI images were acquired in two head positions designed to induce a large field inhomogeneity change. A field map and a distortion-free structural image were acquired at each position to assess the ability of dual-echo EPI to generate reliable field maps and enable geometric distortion correction in both positions. In the second experiment, volunteers were asked to move to multiple random positions during a diffusion scan. Images were reconstructed using the dual-echo correction and a slice-to-volume registration (SVR) registration algorithm. The accuracy of SVR motion estimates was compared to externally measured ground truth motion parameters.ResultsOur results show that dual-echo EPI can produce slice-level field maps with comparable quality to field maps generated by the reference gold standard method. We also show that slice-level distortion correction improves the accuracy of SVR algorithms as slices acquired at different orientations have different levels of distortion, which can create errors in the registration process.ConclusionsDual-echo acquisitions with blip-reversed phase encoding can be used to generate slice-level distortion-free images, which is critical for motion-robust slice to volume registration. The distortion corrected images not only result in better motion estimates, but they also enable a more accurate final diffusion image reconstruction.© 2020 by the American Society of Neuroimaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.