• Conf Proc IEEE Eng Med Biol Soc · Jan 2015

    Estimating instantaneous respiratory rate from the photoplethysmogram.

    • Parastoo Dehkordi, Ainara Garde, Behnam Molavi, Christian L Petersen, J Mark Ansermino, and Guy A Dumont.
    • Conf Proc IEEE Eng Med Biol Soc. 2015 Jan 1; 2015: 6150-3.

    AbstractThe photoplethysmogram (PPG) obtained from pulse oximetry shows the local changes of blood volume in tissues. Respiration induces variation in the PPG baseline due to the variation in venous blood return during each breathing cycle. We have proposed an algorithm based on the synchrosqueezing transform (SST) to estimate instantaneous respiratory rate (IRR) from the PPG. The SST is a combination of wavelet analysis and a reallocation method which aims to sharpen the time-frequency representation of the signal and can provide an accurate estimation of instantaneous frequency. In this application, the SST was applied to the PPG and IRR was detected as the predominant ridge in the respiratory band (0.1 Hz - 1 Hz) in the SST plane. The algorithm was tested against the Capnobase benchmark dataset that contains PPG, capnography, and expert labelled reference respiratory rate from 42 subjects. The IRR estimation accuracy was assessed using the root mean square (RMS) error and Bland-Altman plot. The median RMS error was 0.39 breaths/min for all subjects which ranged from the lowest error of 0.18 breaths/min to the highest error of 13.86 breaths/min. A Bland-Altman plot showed an agreement between the IRR obtained from PPG and reference respiratory rate with a bias of -0.32 and limits agreement of -7.72 to 7.07. Extracting IRR from PPG expands the functionality of pulse oximeters and provides additional diagnostic power to this non-invasive monitoring tool.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…