• Journal of neurotrauma · Sep 2020

    Vascular-Cognitive Impairment Following High-Thoracic Spinal Cord Injury is Associated with Structural and Functional Maladaptations in Cerebrovasculature.

    • Rahul Sachdeva, Mengyao Jia, Shaoxun Wang, Andrew Yung, Mei Mu Zi Zheng, LeeAmanda H XAHXInternational Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.University of British Columbia, Vancouver, British Columbia, Canada., Aaron Monga, Sarah Leong, Piotr Kozlowski, Fan Fan, Richard J Roman, Aaron A Phillips, and Andrei V Krassioukov.
    • International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada.
    • J. Neurotrauma. 2020 Sep 15; 37 (18): 1963-1970.

    AbstractIndividuals living with chronic spinal cord injury (SCI) often exhibit impairments in cognitive function, which impede their rehabilitation and transition into the community. Although a number of clinical studies have demonstrated the impact of impaired cardiovascular control on cognitive impairment, the mechanistic understanding of this deleterious relationship is still lacking. The present study investigates whether chronic disruption of cardiovascular control following experimental SCI results in cerebrovascular decline and vascular cognitive impairment. Fourteen weeks following a high thoracic SCI (at the third thoracic segment), rats were subjected to a battery of in vivo and in vitro physiological assessments, cognitive-behavioral tests, and immunohistochemical approaches to investigate changes in cerebrovascular structure and function in the middle cerebral artery (MCA). We show that in the MCA of rats with SCI, there is a 55% (SCI vs. control: 13.4 ± 1.9% vs. 29.63 ± 2.8%, respectively) reduction in the maximal vasodilator response to carbachol, which is associated with reduced expression of endothelial marker cluster of differentiation 31 (CD31) and transient receptor potential cation channel 4 (TRPV 4) channels. Compared with controls, MCAs in rats with SCI were found to have 50% (SCI vs. control: 1.5 ± 0.2 vs. 1 ± 0.1 a.u., respectively) more collagen 1 in the media of vascular wall and 37% (SCI vs. control: 30.5 ± 2.9% vs. 42.0 ± 4.0%, respectively) less distensibility at physiological intraluminal pressure. Further, the cerebral blood flow (CBF) in the hippocampus was reduced by 32% in the SCI group (SCI vs. control: 44.3 ± 4.5 mL/100 g/min vs. 65.0 ± 7.2 mL/100 g/min, respectively) in association with impairment of short-term memory based on a novel object recognition test. There were no changes in the sympathetic innervation of the vasculature and passive structure in the SCI group. Chronic experimental SCI is associated with structural alterations and endothelial dysfunction in cerebral arteries that likely contribute to significantly reduced CBF and vascular cognitive impairment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…