• J Hyg Epidemiol Microbiol Immunol · Jan 1988

    Determining the basic characteristics of aerosols suitable for studies of deposition in the respiratory tract.

    • L Legáth, A Naus, and J Halík.
    • Medical Faculty of Hygiene, Charles University, Prague, Czechoslovakia.
    • J Hyg Epidemiol Microbiol Immunol. 1988 Jan 1; 32 (3): 287-97.

    AbstractStudies of aerosol particle deposition in the respiratory tract requires experimental inhalation of artificial model aerosols. The paper formulates some of the most important requirements for the properties of such aerosols. Several suitable fractions were prepared as part of a research project dealing with the use of microporous polymers for diagnostic purposes. 5 fractions of the polymer designated G-gel 60 with the particle size as stated by the manufacturer, ranging from 3 to 7 micron were evaluated using a 16-channel particle dispersity analyzer HIAC/ROYCO MT 3210 with the sensor 1200 and operated by a microprocessor, the equipment being coupled to an APPLE IIe computer. G-gel 60 particles introduced into the aerosol were characterized by the parameters CMAD, MMAD and sg both numerically and graphically. The measurement procedure was found to be very sensitive with respect to all fractions in evaluating the subtile differences between different lot numbers of the aerosol. G-gel 60 fractions characterized both numerically and graphically were compared with the known aerosols from paraffin oil and atmospheric air. The equipment MT 3210 enables prompt determination of the percentages of aerosol particles distribution by size class. The authors conclude that the procedure, both in its numerical and graphical versions, is particularly suitable for the diagnosis of aerosol particles deposition in the respiratory tract, offering a new application for HIAC/ROYCO in the field of medicine. In evaluating atmospheric aerosol in exhaled air, the number of particles was found to be below that in inhaled air, the difference being dependent on the choice of investigation methods. Percentual distribution of deposited particles following one minute ventilation proved to be at its maximum, as regards atmospheric aerosol, in the 0.30-0.50 micron range. The deposition curve was similar to already published curves, being characterized by an S-shaped pattern with maximum deposition in the greater size classes. An analysis of inhaled, exhaled and deposited aerosol suggested that deposited aerosol is more polydisperse and has particles of greater sizes than inhaled aerosol. Investigation of the effect of apnoe on deposition indicated that deposition increased as a function of apnoeic pause.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…